Do Job Networks Disadvantage Women?
Evidence from a Recruitment Experiment in Malawi *

Lori Beaman†, Niall Keleher‡, and Jeremy Magruder§

February 2014

Abstract

We use a field experiment in Malawi to show referral-based hiring could disadvantage qualified women, highlighting another channel behind gender disparities in the labor market. We find that men systematically refer few women. This is not because there are too few women who are qualified for the job. Instead, factors unrelated to women’s qualifications but instead due to the social environment, such as men having worse information about women’s abilities and receiving more social benefits from referring men, play a role. Firms cannot just rely on their female employees either since in this context, women referred lower quality candidates.

1 Introduction

While the gender gap in labor force participation has declined sharply in the last 30 years, women continue to earn less than men in countries around the world (World Bank Group and others, 2011). In Malawi, women are significantly under-represented in the formal sector (World Bank Group and others, 2010) as is common in many developing countries (Bell and Reich, 1988). A large portion of the literature in economics has focused on labor market discrimination (taste-based or statistical) or differences in human capital accumulation as reasons for the gender gap in earnings (Altonji and Blank, 1999). Another possibility is that hiring processes

*We thank IPA-Malawi field staff for dedicated and careful implementation, and Sam Arenberg for research assistance. We also thank participants at numerous seminars and conference audiences for helpful comments. We are grateful to Pascaline Dupas, Matt Jackson, Seema Jayachandran, Cynthia Kinnan, Ethan Ligon, Kaivan Munshi, Imran Rasul, Mark Rosenzweig, Aloysius Siow, among others, for helpful comments and discussions. All errors are our own.

†Northwestern University. Email: l-beaman@northwestern.edu
‡Innovations for Poverty Action. Email: nkeleher@poverty-action.org
§University of California, Berkeley. Email: jmagruder@berkeley.edu

1Additional explanations include the role of technology (Goldin and Katz, 2002), deregulation and globalization (Black and Strahan, 2001; Black and Brainerd, 2004), and differences in psychological attributes and preferences such as risk preferences, attitudes towards competition, other-regarding preferences, and negotiation (Niederle and Vesterlund, 2007; Bertrand, 2011).
themselves disadvantage women. We conduct a field experiment recruiting employees for a job in which men and women regularly compete in order to ask whether the use of referrals inherently disadvantages women in the labor market.

A large fraction of jobs - up to 50% - are attained through informal channels, including employee referrals (Bewley, 1999; Ioannides and Loury, 2004). The potential of social network-based hiring to create inequality between groups has been described theoretically (Calvo-Armengol and Jackson, 2004), but there is limited empirical evidence. However, stylized facts in the literature suggest that there may be gender differences in referral behavior: Ioannides and Loury (2004) document that women are less likely to report being hired through a referral and that unemployed women are less likely than unemployed men to report using family and friends as a means of search.

Of course, these stylized facts alone do not show that women are disadvantaged by the use of networks in the labor market: women may work in occupations where networks are less relevant, or they may be less likely to report network help for the same hiring procedure. Moreover, if individuals are able and willing to screen on hard-to-observe dimensions for their employers (Montgomery, 1991; Beaman and Magruder, 2012; Burk et al., 2013; Hensvik and Skans, 2013), then referral networks may be advantageous for disadvantaged groups including women. Female applicants could have, on average, weaker easy-to-observe characteristics - like job experience - but network screening may succeed in identifying the women who have strong hard-to-observe but productive characteristics. Therefore, whether women are made worse off by the use of employee referrals remains an open question.

We used a competitive recruitment drive conducted by a research organization in Malawi, Innovations for Poverty Action (IPA-Malawi), as an opportunity to generate a database of male and female applicants to test how job referrals affect the recruitment of men and women in an experimental setting. IPA-Malawi has historically struggled to hire female enumerators and was interested in exploring whether referrals could uncover an otherwise untapped pool of qualified

2For the Calvo-Armengol and Jackson (2004) mechanism to be a relevant source of long-run inequality between men and women, job networks would need to be characterized by gender homophily. A large literature in Sociology (reviewed in McPherson, Smith-Lovin, and Cook, 2001) suggests that gender homophily in networks begins at early ages and is particularly strong in workforce networks. Mortensen and Vishwanath (1994) also show theoretically that network-based job information dissemination can disadvantage women, even if men and women are equally productive but men have a higher contact probability.

3Moreover, occupational segregation is commonly cited as a source of income disparity across gender (Blau and Kahn, 2000; Arbache, Kolev, and Filipiak, 2010). The use of employee referrals may be one of the mechanisms creating this segregation (Fernandez and Sosa, 2005; Tassier and Menczer, 2008).

4Literally, binders full of men and women.
female applicants specifically and qualified applicants in general.5 The position was advertised using the traditional method of posting flyers. Initial applicants attended a half-day interview process which included a written exam and a mock interview, where the candidate surveyed an actor playing the role of a typical respondent. At the conclusion of the application process, candidates were asked to refer a friend or relative to apply for the position and were offered a finder’s fee. The referral process was cross-randomized along two main dimensions: candidates were either told that they may refer a woman, that they may refer a man, or that they may refer anyone; second, their finder’s fee was randomly selected to be a fixed fee of either 1000 or 1500 Malawi Kwacha (MWK; $1=153 MWK) or a performance incentive (a guaranteed 500 MWK with the potential to earn an additional 1300 MWK, for a total of 1800 MWK, if the referral attained a certain threshold). This is approximately a day’s wage for an enumerator.6

Applicants who performed above the median qualified for future positions and were informed that they would be called as positions open.

We find that qualified female candidates are disadvantaged by the use of social networks in the hiring process. Among the conventional applicants (CAs) who were allowed to choose either gender for a referral, only 30% of referrals are women. This is statistically significantly lower than the fraction of women who apply through traditional recruitment channels (38%). The low number of women referred is driven largely by male candidates: when given the choice, 77% of men referred other men.

The random variation in the structure of the finder’s fee and the requested gender of the candidate enables us to look at three main explanations of why men overwhelmingly refer other men.7 Our motivation is to disentangle factors which are useful for the firm - such as the candidate’s true underlying quality - from those which are not useful for the firm and stem from the social environment the candidates are embedded in. First, women may be scarce in men’s networks, especially because men are more likely to complete secondary school than women in Malawi (27% vs 16% in urban Malawi (National Statistical Office of Malawi, 2009)).8 Second,5 Often, the gender of the enumerator is important. For example, IPA-Malawi and many other survey firms prefer to use female enumerators when surveying women about sensitive questions, such as family planning practices. 6The daily wage for an enumerator at the time was typically MWK 1875, though enumerators working outside the cities would also earn a per diem worth approximately the same as the salary. 7We focus on male CAs both since their behavior leads to fewer women being referred and since most firms will start off male-dominated (as is this case) and therefore the behavior of male employees will have the largest impact on recruitment. 8These figures are among those 10 years and older according to the 2008 census, with a smaller gap among the younger generations.
men may be responding to incentives (either explicit or implicit) provided by the firm to refer good candidates, who may be men. Finally, characteristics of the social environment, such as altruism, expected future reciprocity, or more accurate information about job-specific skills may lead men to prefer other men.

This disadvantage for women does not appear to be due to men not knowing women or because women are particularly scarce in men’s networks: men make referrals at identical rates when required to refer either women or men. We use a theoretical model to show that this could not occur if the number of women in men’s networks was very small compared to the number of men unless there were also other important differences between men and women in men’s networks. Moreover, we show that performance pay leads to a lower referral rate when men have to refer other men but not if they have the choice of referring a man or a woman. Therefore there are some men who only know sufficiently good women to make a referral when offered performance pay.

We show that at least part of the reason women are infrequently referred by men has to do with the social environment, and not women’s qualifications. Our test focuses on fixed fee treatments, where incentives to find a high ability referral are the weakest. Men overwhelmingly refer other men in fixed fee treatments. But when we ask men explicitly to refer women, the referral’s probability of qualifying is the same - if anything slightly higher - as when the male CAs were asked to refer only men. Therefore, women’s disadvantage in fixed fee settings does not stem from actual quality differences. Our model highlights that there are at least two social considerations which could push men to refer other men in fixed fee treatments. First, men may receive higher social benefits, as in Bandiera et al. (2009); Beaman and Magruder (2012); Prendergast and Topel (1996), from referring other men. These could include higher future payments in the risk sharing arrangement, more utility from referring a man due to altruism or a direct kickback. They could also pay lower search costs from referring men if there are societal norms restricting men’s interactions with women. While these factors are quite diverse, they are all things that do not affect firm profits and are simply imposing restrictions on the firm’s ability to use its employees to get good quality candidates. Second, even though there is no direct incentive to refer someone good, the CA may internalize the firm’s problem if they believe there is a reputational benefit (cost) of referring someone good (bad). If reputational incentives are concave, CAs are less likely to refer someone whose quality signal is noisy. The social environment may be such that male CAs receive a noisier signal about women: gender
homophily in networks is widely documented around the world (McPherson et al., 2001) and could mean men have fewer opportunities to learn about women’s abilities.

While we provide evidence that social considerations put women at a disadvantage, are there also productive reasons women may be left out of network-based job recruitment? Yes, but not all contracts will allow the firm to capitalize on them. When male CAs can refer either men or women, we see no more men being referred under performance pay than under fixed fees. We also see no difference in the quality of the candidates referred. In this context, therefore, increasing the incentives for CAs to search for a high quality candidate did not make women worse off.

However, our experiment provides some evidence cautioning that contracts which provide larger returns to candidate quality could put women further at a disadvantage. Among male CAs who are asked to refer men, we find that those in the performance pay treatment refer better qualified candidates than CAs who were offered a fixed fee. This confirms that CAs know which of their male friends represent stronger candidates, and that there are important social benefits which cause them to choose men who they know are less likely to succeed under fixed fees. However, we do not find this response when male CAs must refer women. Firms therefore have an incentive to allow men to continue to refer only other men (and even encourage it) since the best candidates come from men referring other men with a performance bonus. Since men do refer higher ability men when given performance pay, it may be surprising that men do not make higher ability referrals when they can choose referrals of either gender. The model suggests an explanation for this: some CAs may prefer a referral who has a noisy quality signal (a woman) who gives higher social benefits over a high quality man who gives lower social benefits. We demonstrate that this can happen when men have worse information about women than men in their network, and that the net effect of this tradeoff depends on how much quality is rewarded from the firm. We conclude therefore that larger performance bonuses could lead male CAs to refer even fewer women.

Can a firm rely on their female employees to offset men’s behavior? Our experiment indicates that using women to make referrals would not be effective in this context because women systematically referred people who were less likely to qualify. While women refer other women at about the same rate as women apply through the traditional method, a female CA is 18 percentage points less likely to refer someone who qualifies than a male candidate. Since

9Our experiment provides a moderate performance incentive, about a day’s worth of income.
men are systematically referring men, and women are unlikely to refer someone who qualifies, the net result is that few qualified women get referred to the firm. We also find that women CAs do not respond to the performance pay incentive, indicating that either women have little information about people (men and women) in their social network or that the incentive pay was too small to induce a change in the CAs’ behavior. Either way the results caution that firms at a minimum may find it more expensive to find good female candidates by eliciting referrals from their female employees than by tacitly allowing their male employees to refer high ability male candidates.

The experiment provides clean evidence that women fare worse than men when IPA-Malawi uses referrals to make hires. As with any field experiment, there is a risk that results would not generalize to other contexts. In this case, however, while there is an absence of experimental evidence on global hiring practices, there is documentation of consistent trends in observational data in contexts much different than Malawi. For example, Lalanne and Seabright (2011) find that women executives in the U.S. and Europe don’t leverage their contacts into higher salaries as well as their male counterparts. Loury (2006) using the NLSY found that male workers referred by women get lower on average wages than those who applied through formal channels. Seabright (2012) even suggests that women are more likely to invest in strong ties rather than weak ties, which could hurt them in labor markets which rely on contacts as in Granovetter (1973)’s classic work. The results are also consistent with the finding from observational data from a call-center in Fernandez and Sosa (2005) and supports the large literature in sociology arguing that informal referral processes are one of the drivers of segregation of jobs (Doeringer and Piore, 1971; Mouw, 2006; Rubineau and Fernandez, 2010). While the internal validity of our estimates cannot directly speak to the potential internal validity of these other studies, they do allow us to conclude that the apparent disadvantage of women in referral-based hires is a causal relationship in Malawi, and may well be similarly causal in these other contexts.

The paper is organized as follows. The experimental design and data are described in section 2. The main results are discussed in section 3. Section 4 develops a model of referral choice which suggests predictions for how scarcity, the quality distribution of men and women, and the social environment may manifest in our experiment, and these predictions are brought to the data on referrals of male CAs in section 5. Section 6 describes women CAs’ referral

10In that context, men are the disadvantaged group, who are similarly less likely to receive referrals.
choices, and finally we conclude.

2 Experimental Design

2.1 Setting and Overview

Women in Africa are more likely to be in the informal sector, and the proportion of women with formal employment is less than half that of men (Arbache et al., 2010). Malawi is not an exception to this trend. A recent survey of Malawian households suggests that less than one-third of women participate in the formal labor force, while nearly 58% of men do so (World Bank Group and others, 2010). Among urban women, 38.2% had not been employed in the preceding twelve months; this rate is more than double that found among urban men (18.6%) (National Statistics Office (NSO) and ICF Macro, 2011).

IPA-Malawi hires enumerators to conduct interviews of farmers, business owners, and households in rural and urban Malawi. Enumerator jobs are relatively well paid but offer only short-term contract work, typically for a few months at a time. In the 12 months following the recruitment drive (our experiment), IPA-Malawi projected hiring a minimum of 200 enumerators for its survey activities. IPA-Malawi had an explicit motivation to hire more female enumerators than their usual recruitment methods allow. Typically, only 15% to 20% of enumerators hired by IPA-Malawi are women, and some survey tasks require same-gendered enumerators (for example, same-gendered enumerators are sometimes important for sensitive questionnaires).

For this experiment, we introduced incentives for job applicants to make referrals during IPA’s recruitment sessions in the two main Malawian cities, Blantyre and Lilongwe. There were a total of 55 sessions (including CAs and referrals) in the two cities, over 31 days from late June 2011 through August 2011. We had two interview sites within Lilongwe and one in Blantyre. After the initial conventional applicant session at each site, CAs and referral sessions were interspersed with one another overtime. In some recruitment sessions, we interviewed both CA and referral applicants.

To recruit conventional applicants, IPA posted fliers indicating a hiring drive at a num-

11 See Godlonton (2012) for a fuller description of the data collection industry in Malawi. According to the 2010/11 Integrated Household Survey, Godlonton (2012) states that the typical urban man aged 18-49 who completed secondary school earned $4.75 per day. IPA pays $6.50 plus $12 in per diem per day.

12 Informal interviews with qualified female applicants suggest that one reason qualified female applicants were hard to find was that there are gender differences in willingness to travel regularly and for several weeks at a time in Malawi, which is necessary to work as a survey enumerator.
ber of visible places in urban areas. The posters included information on the minimum requirements for IPA enumerators, the dates and times of the recruitment sessions, and a solicitation to bring a CV and certificate of secondary school completion (MSCE). Minimum requirements to be hired for an enumerator position are: a secondary certificate, fluency in the local language (Chichewa), and English reading and oral comprehension. Candidates with data collection experience, good math skills, and basic computer skills are given preferential review. Participants then attended an interview session, where they submitted their CV and were registered with a unique applicant number. Participants were limited to those individuals who had never worked for IPA. Each day, two sessions were conducted by IPA staff. At the start of each session, participants were introduced to IPA and the role of an enumerator was described.

2.2 Quality Assessment

The screening session included a written test similar to the one IPA had previously used, and a practical test which served as a condensed version of the training that IPA had previously used to select enumerators. Participants were given one of two distinct written tests. Each test consisted of several math problems, ravens matrices, English skills assessment, job comprehension component, and a computer skills assessment. Our screening session integrated a practical test to obtain information on otherwise hard-to-observe qualities that are important for the work of an enumerator.

For the practical test, the participant played the role of the enumerator for a computer assisted personal interview. An experienced IPA enumerator played a scripted role of the interview respondent. The respondent scripts included implausible or inconsistent answers (i.e. age, household size, household acreage) to survey questions. These false answers were used as checks on the participant’s ability to pay attention to detail and verify inaccuracies in responses. When the participant pressed the respondent for a correction, the respondent gave a plausible answer. Among the respondents, two sets of implausible answers were used in order to limit any ability to predict the practical test.

13 The standard IPA-Malawi screen session includes a written test similar to what was used in the experiment. Instead of the practical test used in the experiment, applicants deemed to be qualified from the written test and CV would be invited for a survey-specific training of enumerators. After a multi-day training for that survey, a subset of the candidates who were trained are typically selected to work on that survey.

14 All participants were required to go through a short self-administered training with a computer-assisted personal interviewing (CAPI) software in order to ensure a consistent level of familiarity with the computer program. Once finished with the self-administered CAPI training, participants moved to the practical test.

15 The two sets of written tests and the two versions of the practical exam were randomly distributed to
Scores were calculated for all participants on a 0-to-100 scale. The total score was a combination of the CV score, written test score and practical test score.

2.3 Referral Instructions

The setting offered an opportunity to test several potential channels through which a firm can influence the type and quality of applicants generated through a referral process. Prior to leaving the recruitment session, participants had a one-on-one conversation with the recruitment manager. During this conversation, a letter was provided to the applicant inviting the applicant to identify another individual to refer to IPA for consideration as an enumerator. Along with the letter, the applicant received a card to give to his referral, and the referral used the card to gain admission to the interview cite. The card is also how we track referrals to particular CAs, as we did not solicit names directly from the CAs; instead we wanted CAs to be able to talk with potential referrals before making their referral choice. The message provided to the participant was the crux of this experiment: we randomly varied the content of the letters.

Each letter included an instruction about the gender requirement, if any, of the referral who could be invited to attend a future recruitment session. The letter instructed the original participants that their referral had to be male, had to be female, or could be anyone. The referral needed to be someone who had not worked for or been tested by IPA in the past. The letter also said that the referral should be highly qualified for the enumerator position and gave a suggestive guide about what this would entail. Namely, the letter stated that a strong enumerator should have a secondary school certificate, fluency in Chichewa, excellent comprehension of English, data collection experience, and good math and computer skills. The CA was told that the referral should perform strongly on the written and practical assessments completed by the CA.

Conventional applicants were also randomly assigned into one of three pay categories (cross randomized with the gender treatments): a fixed fee of 1000 Malawi Kwacha, a fixed fee of 1500 MWK, or a performance incentive of 500 MWK if their referral does not qualify or 1800 MWK if their referral does qualify. All treatments were fully blind from the perspective of the evaluators. All CAs were eligible to receive payment (fixed fee or base pay, if in the incentive group) if their referral attended and completed a recruitment session. Referrals typically par-
ticipated in recruitment sessions three to four days after the conventional applicant’s session but CAs could send in a referral anytime up until we finished interviewing at that cite (which was unknown to applicants). The screening session, including the written and practical test components, were the same as for conventional applicants.

Each week, a list of qualified applicants was posted at the recruitment venue, and qualified applicants were told that they would be considered for future job opportunities with IPA-Malawi. Any original applicant who qualified for a payment was informed and given payment in a sealed envelope.\(^{16}\) Most CAs did not know their score or whether they qualified before making their referral.

2.4 Internal Validity and CA Characteristics

Appendix Table A1 displays summary statistics for the sample of CAs, for men and women separately. It also shows that the randomization led to balance along most characteristics. The \(p\) value for the joint test of all the treatment variables, and their interactions, is displayed in column (2) for male CAs and column (5) for female CAs. Among male CAs, only the number of feedback points for male CAs is significant at the 5% level and the Practical Component \(Z\)-score is significant at the 10% level for both men and women CAs. For women CAs, there is also a baseline difference in MSCE math scores at the 5% level.

Figure 1 plots kernel densities of CA overall test score separately for men and women, and confirms that men and women who respond to the traditional recruitment method on average have similar distributions of test scores. There is some evidence that male CAs outperform female CAs on the assessment, which can be seen in the small rightward shift in men’s performance across the distribution of the referral test scores. Panel A of Table 1 confirms that this difference is statistically significant, at the 10% level. However, there is much more variation within CA gender than there is between CA genders, and nearly all of the support of men’s and women’s test scores is common. As such, men and women are in true competition for these jobs. Nonetheless, we may be concerned over whether the distribution of quality of potential referrals is different in networks of men and women.

\(^{16}\)To maintain a quick turn-around in notifying applicants of qualifying, real-time test-scoring and data entry was necessary. This led to a few misentered values which slightly affected the identities of qualifying people. In this paper, we use corrected scores and qualifying dummies which do not reflect these typos in all main analysis, though results are robust to using the actual qualification status.
3 Are Women Disadvantaged?

Figure 2 documents the primary result of this paper. While 38% of applicants themselves were women, only 30% of referrals are women when we allow CAs to choose which gender to refer. This difference is significant at the 5% level.17 This difference in application rates is driven by men systematically referring other men when given the choice: women refer women at approximately the rate by which women apply themselves through the traditional method (43% of the time), while men refer women only 23% of the time. The difference between male and female CAs is significant at the 1% level, as shown in column (4) of panel C in Table 1. Moreover, these differences persist across the range of CA performance: Figure 3 presents local polynomial regressions of the gender choice of referral on CA overall test score, disaggregated by men and women.18 CA men are less likely to refer women than CA women across the distribution, with particularly large differences at the top and bottom of the distribution of CA test scores (excluding the tails where there are very few observations). Table 1 though shows that women’s referrals are less likely to qualify then men’s, and this offsets the fact that they refer more women than men. We will discuss this in more detail in section 6. Here we use this information to look at the gender ratio among the pool of qualified candidates. 35% of the pool of qualified CAs are women. Of the pool of qualified referrals, only 28% are women.19 Therefore the same trend in getting fewer women through referrals than through the traditional recruitment method continues if you look at only qualified applicants. Overall, we conclude that the use of referral systems disadvantages women in this context.

One possible concern with these findings is that at each of the three interview sites, we started interviewing conventional applicants before the referrals (in order to have candidates to make referrals). We do not want to conflate a possible reduction in the number of women applicants over time with the difference in the number of women recruited through different hiring channels. Therefore we designed the experiment to have oscillating rounds in which we interviewed CAs and referrals so as to minimize this problem. On many days we interviewed both referrals and CAs. Perhaps as a result of this design, this concern (while ex ante quite serious) appears to have little empirical support. We can document trends in the characteristics

17Table 1 Panel B shows the equivalent figures for the specific subset of CAs randomized into the either-gender treatments: in this subsample the pattern is even more striking as 40% of CAs are women.

18In both cases, the sample is restricted to CAs who have the choice of which gender to refer.

19This difference is not statistically significant at conventional levels (p=.19), but this is likely because the sample size is half the size as the effect size is quite similar.
of people who remain interested in the job by looking at how CA characteristics change with
the number of recruitment sessions held at each site. Appendix Figure A1 documents that, if
anything, the fraction of women among conventional applicants increased over time at each site.
Appendix Figure A2 also shows that the quality of women applying as conventional applicants
is variable but largely increasing over time. By contrast, the qualification rate among men is
largely flat. There is little evidence then that qualified women overall were unavailable after
the initial interview session.

4 Theory

In this section, we develop a model of referral choice to investigate which characteristics of
CA behavior may lead to women’s disadvantage. CAs each have a network of \(N_M \) men and
\(N_F \) women. These men and women each have three characteristics: an actual quality \(Y \); a
noisy signal of that quality that the CA observes \(Q \), where \(Y = Q + \varepsilon \) and \(\varepsilon \) is distributed
\(N(0, \sigma^2_\varepsilon) \), and an idiosyncratic social benefit \(\alpha \), which may be negative or positive and can be
interpreted as the cost to CA \(i \) of bringing that person in or the reward that that person would
give the CA for bringing him or her in. Social benefits are meant to include both the cost of
alerting the potential referral to the job opportunity, and any altruistic or reciprocal transfers
that the referral would make for being given this opportunity. \(\alpha_j \) may therefore be positive
or negative, and we make no assumptions about it’s relationship to \(Q_j \) or \(Y_j \). Each potential
referral of gender \(g \) is independently drawn from a joint distribution \(f^g(\alpha, Q) \). In addition
to social payments, CAs may also consider ambient incentives to refer a high quality worker
\((E [R(Y) | Q]) \), which perhaps derive from reputational effects, as well as any direct financial
incentives provided by the firm \((E [P_i(Y) | Q]) \). \(R(Y) \) is presumed to be increasing in \(Y \). For
simplicity, we consider contracts of the form \(F_i + P_i I (Y_j > c) \), that is, contracts where the CA
receives a fixed fee \(F_i \) for referring anyone, and an additional \(P_i \) if their referral qualifies by
performing better than some qualification threshold.

The CA problem is to find the optimal referral. The entire network is \(N_i = M_i \cup F_i \),
where \(M_i \) (\(F_i \)) is the set of potential male (female) referrals. In an unrestricted setting, when
CAs can choose from the entire network \(N \), CAs solve

\[
\max_{j \in N_i} E[R(Y_j) | Q_j] + \alpha_j + E[P_i(Y_j) | Q_j] + F_i
\]
With these contracts, the level of fixed fees does not affect the relative returns to referring different network members. Therefore, we can summarize the solution to this referral problem in terms of the level of performance pay. Suppose person N^*_P is the optimal referral from the full network \mathcal{N} under contract (F, P), and person G^*_P is the optimal referral in network of gender G. Finally, define a contact j as referrable at contract (F_i, P_i) if the CA can expect positive profits from referring j at that contract, that is, if $E[R(Y_j) | Q_j] + \alpha_j + E[P_i(Y_j) | Q_j] + F_i > 0$. If no one in the network is referrable, then the CA declines to make a referral.

4.1 Mechanisms

In this framework, men may be systematically chosen as referrals for three reasons: first, if $N_M > N_F$, then even if the underlying distributions of social costs and quality are similar, men will maximize that distribution more frequently just because there are additional draws to find the maximum. Second, men may be chosen systematically if workers believe there are higher quality male referrals and because they are trying to maximize the quality of the worker who is referred either because of ambient reputational incentives or because of explicit performance incentives. Finally, factors from the social environment may induce CAs to refer men. We consider two types of social considerations: the distribution of social benefits, α, and the accuracy of quality signals, which may interact with the firm incentives and social payments to refer more men or women. We consider the implications for each of these in turn.

4.1.1 Scarcity

Definition 1 CAs choose men more frequently under contract (F_i, P_i) due to scarcity of potential female references if $N_M > N_F$ and $P(j = N^*_P | j \in \mathcal{M}_i) = P(j = N^*_P | j \in \mathcal{F}_i)$.

If a potential referral is equally likely to be the best referral under contract (F_i, P_i) whether that person is male or female, and the only difference is that there are more draws of men in the network than of women, then the probability that a man is referred under contract $(F_i, P_i) = \frac{N_M}{N_M + N_F}$. In practice, N_M and N_F are unobserved to the econometrician. Intuitively, however, if referrable women are much more scarce in CA networks than referrable men, then we should observe two things. First, CAs will refer other men more frequently (when they can choose from the entire network). Second, CAs will make a referral more often when they are restricted to refer men than when they are restricted to refer women. Proposition 1
formalizes this intuition to create a bound on the fraction of men we should see referred if the only difference between men and women is that women are more scarce.

Proposition 1 Define $N^0_M (F_i, P_i) \left(N^0_F (F_i, P_i) \right)$ to be the number of referrable men (women) in network N_i under contract (F_i, P_i), that is, those for whom the expected payoffs to the CA from making them as a referral are positive. Define $\psi (F_i, P_i) = E[N^*_F (F_i, P_i) | Q_{N^*_F pi}] + \alpha N^*_F pi + E[P_i (Y_{N^*_F pi}) | Q_{N^*_F pi}] + F_i > 0$. Then:

(a): If scarcity of potential female referrals is the only cause of women’s disadvantage in being referred, then $\psi (F_i, P_i) = N^0_M (F_i, P_i) / \left(N^0_F (F_i, P_i) + N^0_M (F_i, P_i) \right)$

(b): Suppose CA’s choose not to make a referral A times as often when required to refer women as when required to refer men, and that each network member of gender G has probability $\Pi^G (F_i, P_i)$ of being referrable at contract (F_i, P_i). Then if scarcity fully explains male preference, then $\exists \gamma < 0$ s.t.

$$
\frac{1 - \psi (F_i, P_i)}{\psi (F_i, P_i)} = \frac{\Pi^F (F_i, P_i) \log \left(1 - \Pi^M (F_i, P_i) \right)}{\Pi^M (F_i, P_i)} + \gamma \log A
$$

Proposition 1 formalizes a bound for the scarcity of women among potential referrals, which depends on the the rates at which men relative to women make a referral, and the probability that an individual person of gender G is referrable. In practice $\frac{\Pi^F (F_i, P_i) \log \left(1 - \Pi^M (F_i, P_i) \right)}{\Pi^M (F_i, P_i)}$ serves as a lower bound for $\frac{1 - \psi (F_i, P_i)}{\psi (F_i, P_i)}$ if $A < 1$ and an upper bound if $A > 1$. Of course, we also don’t observe the probability that an individual network member of gender G is referrable; however, we can use the fact that the overall rate at which CAs make referrals among gender G is analytically $\left(1 - \Pi^G (F_i, P_i) \right)^{N_M}$ to back out what ψ must be at different values of N_F and N_M.

4.1.2 Search for Quality

A second possibility is that men refer men more frequently because CAs are trying to refer the highest quality worker in their network because of ambient or explicit incentives provided by the firm, and that person is more likely to be male than female. In the model, this is suggested if $E \left[R (Y_{M^*_pi}) + P_i (Y_{M^*_pi}) \right] > E \left[R (Y_{F^*_pi}) + P_i (Y_{F^*_pi}) \right].$

Since both $R (Y_j)$ and $P_i (Y_j)$ are non-decreasing in Y_j, we can simply test for whether optimal male referrals are higher or lower quality than optimal female referrals. Moreover, if the search for a high quality worker leads to women’s disadvantage, then we would expect the
optimal referral in the full network to be at least as skilled as the optimal referral in either restricted network. Thus, if responses to employer incentives and scarcity are the only causes of women’s disadvantage, then we would anticipate that
\[E\left[Y_{j_N^*}\right] \geq E\left[Y_{j_M^*}\right] > E\left[Y_{j_F^*}\right]. \]
Comparing quality distributions of referrals made under various gender restrictions and contract types allows a direct test of this hypothesis.

4.1.3 Social Environment in Referral Choice

If scarcity and firm incentives are insufficient to explain the male preference exhibited by CAs, then we know that one of the other aspects of the referral choice problem must be an important contributor. There are two other aspects to the problem: social benefits, \(\alpha_j\), and information, \(\sigma_g\). Both of these can be considered part of the social environment in the referral choice problem: social benefits contain search costs and altruistic payments, which are surely related to social interaction, and the precision of quality signals seems likely to be informed by the frequency or appropriateness of social interaction, as well. We begin by characterizing the solution to the referral choice problem when these social considerations are important.

Proposition 2 \(E\left[Y_{G_{P_i}^*}\right]\) is non-decreasing in \(P_i\). \(P\left(Y_{G_{P_i}^*} > Y_{G_0^*}\right)\) is increasing in \(P_i\) iff (i): \(N_G > 1\); (ii): there is positive probability of observing someone who is both better in expectation than the person who is being referred under fixed fees and whose social payments are not much lower in gender \(G\) networks\(^{22}\); and (iii): \(\sigma_g < \infty\). If any of conditions (i), (ii), or (iii) fail then \(P\left(Y_{G_{P_i}^*} > Y_{G_0^*}\right) = 0\).

This proposition allows us to identify situations where social payments and information are important by examining how referral performance changes with performance incentives. All three of these conditions are necessary, and together they are sufficient. Condition (ii) means in practice that social incentives are not perfectly correlated with quality, and that social incentives aren’t discontinuously lower for higher quality people. Therefore, if we observe referral quality increasing with performance incentives, we will know that: CAs have networks

\(^{20}\)Note that this test is incorrect if the relationship between quality signals \(Q_j\) and actual quality \(Y_j\) are different between the two genders, either because CAs signals are biased for one gender or because of informational differences. We consider this possibility below.

\(^{21}\)One thing not explicitly considered here is that there may be bias in quality signals when referring one gender or the other, so that \(E\left[e_j | j \in G\right] \neq 0\). We ignore this potential for now as our test for response to firm incentives under different information will be robust to this possibility as well.

\(^{22}\)“Not that much lower” depends on how much higher quality the person could be. The specific condition is
\[
\int_{Q_0}^{\infty} \int_{Q_0}^{\infty} E[R(Y_0) - R(Y)|Q_0, Q] f^0(\alpha, Q) dQ > 0
\]
with multiple potential referrals; there are important social benefits in those networks which are not perfectly correlated with referral quality; and that CAs have useful information about the quality of their potential referrals. The failure of any one of these assumptions, however, suggests that referral quality should be unaffected by increased performance incentives.

Social Benefits The most direct social considerations are the social benefits, \(\alpha_j \). If men’s distribution of social benefits dominates women’s, then CAs may systematically refer men in an effort to receive these social benefits. Our experimental framework does not allow a direct test of the differences in social benefits across genders and to a large extent it will be a residual explanation. However, as proposition 2 shows, we will only see the performance of referrals increase in response to a sufficiently large increase in performance pay if social benefits are important and not perfectly correlated with referral ability, providing evidence of the importance of social benefits.

Information If CAs have different information about male and female referrals, then men may be referred more often under fixed fee payments if reputational incentives are concave, and they may be referred more often under performance pay incentives both because of concave reputational incentives and because of efforts to obtain performance pay. We can provide evidence that useful information exists for each gender if referral quality improves when performance pay is increased (when CAs must refer that gender). However, if referral quality does not respond to performance pay in one gender, we will not know whether information or other characteristics of the referral pool are different. The role of information can, though, be isolated when CAs can choose from their entire network, \(N \).

Proposition 3 When individuals choose referrals from the full network \(N_i \), the probability of referral qualification is increasing in \(P_i \). If social incentives are not important, or if \(P_i \) is large enough, then \(P \left[Y_{N^i_p} > c \right] \geq P \left[Y_{G^i_p} > c \right] \forall G \). If information is finite and the same between men and women \(\left(\sigma^F = \sigma^M < \infty \right) \) then Proposition 2 applies to unrestricted choices and performance premia will be positive unless condition (ii) fails for at least one of the genders. If CAs have worse information about women \(\left(\sigma^F > \sigma^M \right) \), the relationship between referral quality and performance pay is ambiguous.

When the full network can be drawn upon for a referral, CAs have the option of referring the same men and women they choose to refer under performance pay. This means that if
they have useful information about men, then they have the opportunity to use that information when their referral choices are unrestricted across genders. However, they may not: while loosening restrictions on referral choices is guaranteed to bring in referrals who generate larger payoffs for CAs, these payoffs could be larger in terms of either social payments or expected performance pay. Proposition 3 suggests that when information is the same about men and women, any CA who changes their referral choice under performance pay will do so to bring in referrals who are higher quality in expectation. However, when information is worse about women, CAs may opt to choose referrals who are worse in expectation under performance pay. This happens because the low ability women face a higher probability of earning the performance bonus than similarly low ability men from the CA’s perspective. In other words, when information is worse about women, CAs may choose to take a gamble on a high social payment but apparently low ability woman, rather than a low social payment but high ability man. This can reduce the performance of referrals when CAs can choose from the entire network N for small enough performance incentives.

5 Empirical Evidence of Mechanisms

Our approach for assessing the causes of male bias is as follows: First, we examine CAs’ choice of whether or not to refer someone to determine whether we can bound the effects of scarcity of women on the referral behavior. Next, we look at the quality of men and women referred by male CAs to look for evidence of CAs responding to direct firm incentives versus other social considerations. Finally, we assess whether information can serve as a source of productive bias against women and how social payments may interact with differential information in referral choices by examining how referral performance changes as performance incentives change.

5.1 Are Women Very Scarce in Men’s Networks?

One explanation for why men refer so few women is that it may not be a choice: men may simply not be connected to women. Indeed, one proposed cause of gender segregation in the labor market is segregated social networks (Tassier and Menczer, 2008). Based on this explanation, referrals serve to perpetuate job segregation due to the limited overlap of groups from which referrals are drawn.

This could either because they are identifying a woman who is higher quality than the man who would have been referred under a fixed fee, or because they are bringing in a better person of the same gender.
The theory above suggested that the rates at which CAs make referrals can help us assess whether women are very scarce in the network. We randomly restricted some CAs to referring only women, and other CAs to referring only men: this allows us to look at how likely CAs are to know men and women who are referrable at our contracting terms. We can analyze this in a straightforward way: define an indicator $R_i = 1$ if the CA makes a referral, and $R_i = 0$ if the CA does not. As a test, then, we simply regress

$$R_i = \sum_k \alpha_k T_{ik} + \delta_t + u_i$$

Where T_{ik} is the exogenously assigned treatment in terms of referral gender and contract payment and δ_t are time trends.

Columns (1)-(2) of Table 2 presents this analysis, where treatments where the CAs were restricted to referring only men (or male fixed fee treatments in specifications which disaggregate by contract terms) are the excluded group. Overall, men are not significantly less likely to make a reference when assigned to refer women than when assigned to refer men, and point estimates on any gender differences are small in magnitude. When we disaggregate by contract type, as in column (2), we observe that men are less likely to make a reference when they are given performance pay than when they are given fixed fees, if the gender of their referral is restricted. The mean referral rate under fixed fees for men in restricted treatments is 89%; point estimates suggest that if these men are instead given the performance contract, return rates fall to 74%.

However, if men are given the choice of referring either men or women, the return rate rises back to 90% - this suggests that there are 15% of men who know only a man who is worth referring under performance pay, but also 15% who know only a woman who is worth referring. In terms of the model, this suggests that CAs are receiving a number of draws of both men and women. Even if all the draws of a CA’s own gender fail to make the participation threshold to bother making a referral, for some CAs there is a draw from the other gender who exceeds it.

Under both contract types, this suggests that A, the relative return rate of women compared to men, is about one. Intuitively, this behavior seems unlikely to be generated by a situation where suitable women referrals are tremendously scarce relative to men, as male CAs are similarly likely to know at least one man and at least one woman who is worth referring. To generate this result if women are really scarce in networks relative to men, any
woman in a network must be much more likely to individually qualify than any man in a
network. Proposition 1 allows us to more directly bound the role of scarcity in women’s disad-
vantage. Since \(A = 1 \), we infer that if scarcity is the only source of women’s disadvantage, then
\[
\frac{(1-\psi(F_i,P_i))}{\psi(F_i,P_i)} = \frac{\Pi^F(F_i,P_i)}{\log(1-\Pi^F(F_i,P_i))} \frac{\log(1-\Pi^M(F_i,P_i))}{\Pi^M(F_i,P_i)}
\]
or that the scarcity of suitable women relative to suitable men can be summarized by the probability that either women or men are referrable.

We of course do not know the probability that any individual woman or man is referrable;
however, we know that \(1 - \left[1 - \Pi^F(F_i,P_i) \right]^{N_F} = E[R_i|T_i = female,F_i,P_i] \) and \(N_F \geq 1 \). Our
approach is to fix \(N_F \), solve for the implied \(\Pi^M(F_i,P_i) \) using the empirical \(\psi(F_i,P_i) \), and eval-
uate the plausibility of the implied network characteristics to determine whether scarcity alone
can achieve the gender referral ratios that we see in the data.

From Table 1, we see that men are referred under fixed fees 77% of the time, while men
are referred under performance pay 79% of the time. Thus, for scarcity to explain why women
are left out under fixed fee contracts, we would need \(\left(\log \left(1 - \Pi^M(F_i,P_i) \right) /\Pi^M(F_i,P_i) \right) \)*
\((0.89/\log 0.11) = 0.299 \), if \(N_F = 1 \). Appendix Table 2 works out the cases for \(N_F \in \{1,2,3\} \)
(these are a bound on the potential of scarcity if \(N_F > 3 \)) and reveals that there is one type
of network under which scarcity can come close to the gender disparities we observe: if there
is exactly one woman who is referrable 89% of the time under fixed fees and very many men
who are almost never referrable, then scarcity can create a situation where men are referred
71% of the time. However, if there is more than one woman in the network or if men are closer
in probability of being referable to women, then scarcity cannot explain the gender preference
that men exhibit for other men under fixed fee contracts. Given that networks with exactly one
woman who is very likely to be referrable and many men who are very unlikely to be referrable
under fixed fees seem a priori unlikely, we feel comfortable rejecting scarcity as an explanation
for our fixed fee results\(^{24}\). Moreover, under performance pay, scarcity can never come close
to explaining observed patterns in referral behavior under any assumptions about the network
structure: with a 74% return rate under performance pay, it is impossible for scarcity of women
to explain why men refer men more than 64.5% of the time and yet refer someone similarly
frequently when required to refer a man or when required to refer a woman, when in fact they

\(^{24}\)A potential concern in interpreting the fixed fee return rates is that since nearly everyone was able to refer
a woman, the potential to improve return rates when referring men is diminished. This concern does not apply
to men making referrals under performance pay, where a larger fraction were not able to refer women (or men),
and so readers may find the bounds on performance pay more compelling. Of course, the fact that nearly
everyone knew a woman worth referring under fixed fees also indicates that identifying women interested in this
opportunity was not enormously difficult.
refer men 79% of the time under performance pay.25

5.2 How Do the Women in Men’s Networks Perform?

Since scarcity of women cannot fully explain men’s preference for men, we examine whether gender differences in the quality distributions of men’s network members combine with CA efforts to identify a high quality worker to generate a sufficient explanation for the observed bias against women. We focus here on contracts without explicit firm incentives in this investigation (our fixed fee contract) as a baseline and will discuss what additional insights we get from the performance pay treatments in the next section. Our model highlights that in the fixed fee treatment, CAs may have an incentive to refer a high quality person due to concerns over their reputation. Under our fixed fee contracts, we continue to find that men are referred significantly more often than women. If firm incentives can generate the bias under fixed fee contracts, they remain a plausible explanation across the range of contract types. The random variation in the gender of the referral allows us to directly investigate whether the women that men would have referred are on average worse quality than the men they prefer to refer.

Figure 4 presents kernel densities of the ability of men’s male and female referrals recruited under fixed fees. The two distributions overlap, and a Kolmogorov-Smirnov test does not statistically differentiate them. If anything, it appears that the quality of men’s networks of women dominates that of men’s networks of men. We conclude, therefore, men’s preference for referring men is not entirely driven by differences in men’s and women’s qualifications in the network.

Therefore there must be other factors affecting men’s referral patterns. The model highlights two which stem from the CAs’ social environment: social benefits and information. If referring male network members generates more social benefits (or are less costly to recruit), then this could explain why men are referring other men in fixed fee treatments - even when the women that they could have referred appear to be just as good. A second explanation is that men have less information about women. If the reputational incentives are concave, CAs may prefer to refer a man simply because their quality signal is more accurate. Both of these explanations are consistent with the experiment and are factors which generate a bias against women for reasons that do not affect firm profits. For example, if men have limited information

25We will discuss these patterns with respect to potential attrition bias and its impact on our subsequent analysis in section 5.3.1. Note, however, that in section 5.2 we compare the performance of men and women referred in performance pay treatments, where there is no different attrition.
about women, then that limited information impedes CAs from referring the best person in the network for the job. While we can not definitely say which of these two factors are driving men’s preference for men in fixed fee treatments, the results show that CAs’ social environment is affecting their choice of referral rather than gender disparities being driven exclusively by underlying differences in ability among members of their social network.

5.3 Financial Incentives & the Social Environment

The fixed fee treatment suggested that factors stemming from the CAs’ social environment led to women benefiting less from referrals than men. When the firm intensifies productive incentives, are women placed at a further disadvantage? We find no evidence of the performance incentives favoring men in our experiment. Comparing panels D and E of Table 1 shows that male CAs refer only marginally fewer women (21% vs 23%) in performance pay than under fixed, and this difference is not statistically significant. The intensification of firm incentives in this case did not further disadvantage women. However, some results from the experiment suggest that CAs’ search for high quality candidates could further disadvantage women if firm incentives were higher stakes than ours.

How CAs change their referral choices in response to performance pay, relative to the fixed fee treatments, also provides insights into CAs’ underlying social environment. Propositions 2 and 3 suggest that social benefits and information - our key characteristics of the social environment - determine how CAs will respond to performance pay. We will be able to provide evidence that the social environment for men referring other men differs from that governing men’s referrals of women.

We examine differences in referral behavior comparing the different gender treatments across fixed and performance pay treatments using the following specification:

\[Y_i = \sum_k \alpha_k T_k + \delta_t + v_i \]

as before, where \(Y_i \) is an indicator for referring a qualified referral, \(T_k \) are the treatment categories in terms of gender and contract structure, and \(\delta_t \) are time trends. Once again, CAs in restricted male, fixed fee treatments are used as the excluded group. Columns (3)-(4) of Table 2 presents the results of this analysis for male CAs.

We focus first on male CAs’ behavior when referring other men. Column (4) shows that
they refer significantly better candidates when given a performance pay incentive: candidates are approximately 25 percentage points more likely to qualify if the CA was in a performance pay treatment than in fixed. Given that the qualification rate is about 50%, this is a very large premium. This demonstrates two points. First, CAs were not referring the best person in the network for the job in the fixed fee treatments. As in Beaman and Magruder (2012), we see evidence of social benefits which skew the CA’s behavior away from what would benefit the firm most. Even in this setting where CAs may internalize some of the firm’s objective function because of reputation, the firm still needs to offset the incentives created within the CA’s social network. Second, CAs must have useful information about the male members of their network. Otherwise, even if they attempted to recruit a better person, we would not see any increase in the actual qualification rate. We therefore conclude that male CAs have useful information for employers about men, and the price of eliciting the information is not prohibitively high.

However, column (4) also shows that male CAs do not create a performance premium when restricted to refer women (the sum of the interaction term with Female Treatment and Performance pay is essentially zero). Simple descriptive statistics demonstrate clearly among CAs in performance pay treatment, the referred men outperform the referred women: 62% of referrals qualify in the male-only treatment vs 44% in the female-only treatment. As a result, we conclude that either men have worse information about women, or that it is more costly to elicit this information about women (i.e. the performance premium would have to be more steep in order to induce them to forego higher social payments - or incur higher recruitment costs - and refer a higher equality female candidate). In either case, the firm gets the highest quality candidates by asking male CAs to refer other men and providing a performance incentive.

Table 2 further shows that there is no performance premium in the either-gender treatments, as the sum of the Performance pay coefficient and the Either*Perf coefficient is approximately zero. While men CAs respond to the performance incentive when they must refer

26 Reputational concerns may be higher or lower in this setting, where candidates are making referrals and not existing employees. On the one hand, the probability of getting the job is less than one - reducing the CA’s worry about his reputation. On the other hand, the firm has very little information about the candidate - compared to existing employees - and therefore a bad referral may be much more damaging to the firm’s opinion of the candidate.

27 A component of the overall score includes the subjective assessment of the candidate by the IPA employee. This represents about 10% of the overall score. Since this component is subject to potential biases related to gender, we have also re-done the analysis excluding that component. To do so, we re-calculate who the median candidate is to determine who would have qualified under this alternative scoring mechanism. We find very similar results. They are omitted for brevity but available from the authors upon request.
other men by referring better quality people, they don’t have this response when they can refer whomever they wish. The model provides an explanation for this: a noisy signal of women’s ability combined with social benefits can lead CAs to prefer referring a potentially lower quality woman who gives high social benefits over a higher quality man with certain low social benefits. In this case, poor information about women and social benefits combine to limit the firm’s ability to use men’s superior information about other men. Taken together, the differences in response to performance incentives when men have to pick only one gender or can refer anyone suggest that there are important differences in the social environment between men’s networks of men and men’s networks of women, supporting the conclusions of section 5.2. Moreover, these differences suggest that there is the potential for firm incentives to increase male bias: after all, the highest quality referrals overall are men’s referrals of men and presumably a strong enough incentive would induce greater male bias. Thus, even though our performance pay contract does not elicit this behavior, we conclude that other contracts may: in particular, contracts which put more emphasis on the quality of the referred candidate may induce CAs to ignore the forgone social benefits and refer even more men than we observed in the experiment.

Table 3 finds that men referred by men under performance pay do statistically significantly better on the computer knowledge part of the exam, on feedback points and better (though not significantly) on most of the other components, whereas the women they refer under performance pay behave quite similarly on all components as the women they refer under fixed fees. This is consistent with men having little information about women, or the financial incentives not being large enough to induce the CAs to choose a better candidate and give up associated social benefits.

We have thus far discussed men’s signals of women as simply being noisier. CA expectations of referral quality may also be biased. In that case, ε^9_j is not mean zero. Biased beliefs are also likely to stem from factors in the CA’s social environment. However, men’s referral patterns are largely inconsistent with biased expectations alone driving the behavior that leads

\footnote{In fact, there are two explanations within the model which can yield better male referrals under performance pay and similar unrestricted and female referrals (who are statistically worse than the male performance pay referrals). One is worse information about women combined with social incentives, and the other is that the underlying joint distribution of women’s quality and social incentives is discontinuous, with there being no probability of observing a woman who is both higher ability than the women referred under fixed fees and who gives social payments which are only slightly less. Both of these explanations suggest the social environment as the key contributing factor; however we focus on the information explanation as discontinuities in the distribution of potential women network members seems ex ante less plausible.}
to few qualified women getting referred. If men (incorrectly) underestimate women’s ability, we would anticipate that this bias is increased under performance pay. As a result, if bias in men’s beliefs about women is driving male preference, we would expect men to refer even more men under performance pay than under fixed fees. However, as Table 1 indicates, men refer men at the same rate under performance pay as under fixed fees. Similarly, men would also make a referral less often when they have to refer a woman in a performance pay treatment if they have biased beliefs. Table 2 showed that this is not the case either. Together with the evidence from section 5.2, we conclude that (biased or unbiased) quality expectations appear to play a small, if any, role in explaining why men refer so few women.

5.3.1 Differential Rates of Making a Referral

In section 5.1, we made note of the fact that there was strong evidence that male CAs were more likely to make a referral in the presence of fixed fees than performance pay. In principle, these differential return rates could influence our estimates of the performance premium, though the fact that we rely on differences between restricted-gender treatments (where return rates were identical) does ameliorate this concern. Still, for example, one interpretation which would be qualitatively consistent with presented results is that all CAs will only refer one particular person, but CAs will just attrit rather than refer that person under performance pay if they are in a restricted male treatment and that person is low quality. Figure 5 is suggestive (since we do not have statistical power to detect differences across the distribution) that among men, there is assortative matching in ability between the CA and their referral under fixed fees. However, Figure 5 also suggests that the performance premium exists throughout the entire distribution of CA test scores, which makes attrition bias less likely to be driving the results in table 2.

Thus, the composition of CAs making referrals does not seem consistent with attrition being the only mechanism. Moreover, even if attrition plays an important role, Table 2 is still evidence of male CAs having more information about men than about women. Male CAs were less likely to make a referral under performance pay, at the same rate, in both restricted gender treatments. However, only the male referrals in the performance pay treatment performed better. Poor information about women would be consistent with this: while male CAs attrit when they anticipate not having a high quality referral, the female referrals in the performance

29In Section 6, we will also note that female CAs responded similarly.

30Since the referral patterns are similar across the entire distribution of CA ability, we have more confidence that the results extrapolate to other contexts where only existing employees make referrals.
pay treatment are no different than those in the fixed fee treatments since the CAs’ quality signals are not strongly correlated with actual performance.

6 Women CAs’ Behavior

Figure 2 showed that women refer other women about 43% of the time, which is statistically the same rate that women apply themselves through the traditional method. Given that women CAs exhibit less of a gender preference in selecting referrals than men CAs, a natural hypothesis is that firms could use women to make references and avoid gender bias while recruiting highly skilled employees. A closer look at our experiment, however, rejects this hypothesis, as the prospective employees (and particularly the women) referred by women CAs are significantly less likely to qualify for the position than either the pool of traditional applicants or men’s referrals. Figure 6 and Table 1 reveal that, on average, women refer people who are thirteen percentage points less likely to qualify for a position than men’s referrals, a difference which is marginally statistically significant. Figure 7 plots the raw data to transparently show that the people referred by women are less likely to qualify than the people referred by men across the range of CA abilities.

Figure 8 presents kernel densities of female CAs’ referrals’ scores in the fixed fee treatments to test whether there may be differences in the quality of referrals in women’s networks of men and women. The ability distribution of referred men stochastically dominates the distribution of referred women, with the Kolmogorov-Smirnov test rejecting the distributions being the same at the 10% level. In terms of means, the referred women perform on average 0.42 of a standard deviation below the CA mean, while men referred by women CAs perform 0.08 standard deviations below the CA mean. Moreover, the introduction of moderate performance incentives does not lead to higher quality referrals by women CAs, as Column 4 of Table 4 shows. Our results therefore indicate that women’s referrals of other women are too unlikely to qualify to be hired to offset men’s referral behavior and create balance in the workforce.

Table 5 shows referral performance disaggregated by component for women CAs. This is suggestive evidence that women are changing their optimal referral choices of both men and women. When we provide performance pay, women refer women with better English skills and who solve more ravens matrices correctly, and they refer men who are more likely to have worked for a survey firm in the past and who perform better on the practical exam. However,
neither of these improvements translate to higher qualification rates because they are also
associated with worse scores on other components. The more experienced men also have worse
math skills, while the women with better language skills perform weakly worse on a number
of characteristics, including being less likely to have tertiary education. These suggest that
women are responding to performance pay and have some useful information for employers,
particularly about other women (as cognitive ability is likely harder to observe in a resume
than past experience), but that this information does not translate into a choice of women or
men who are likely to qualify (at the level of incentives offered in the experiment).31

If women receive particularly high social benefits from referring women whose skills
translate poorly to survey enumeration, the model would predict the pattern in column 3 of
table 4, where women restricted to refer women and women with unrestricted choices choose low
quality candidates. The fact that women’s referrals are of similar ability in performance pay
and fixed fee treatments suggests that, additionally, women either have poor information about
their referrals, or there is a steeper relationship between social benefits and ability in women’s
networks compared to men’s. Our experiment can only provide evidence on the relationship
between social benefits and members’ abilities in women’s networks indirectly by interpreting
referral choices through our theoretical framework. This interpretation is, however, consistent
with very suggestive evidence from other literatures that women tend to invest more in close ties
and less in weak ties that - according to Granovetter (1973) - are most useful for a job search
(Seabright, 2012). Social psychology also suggests that women do more helping in long-term,
close relationships while men display helping behaviors with a wider range of people (Eagley
and Crowley, 1986). It is possible that a larger performance reward could induce women to
refer better quality candidates. However, it would still be cheaper for firms to get good quality
candidates from their male employees.

\textbf{Competition}

An alternative mechanism behind women’s tendency to refer low ability individuals is
that women in particular may be more averse to competition than men (despite the firm’s
motivation of wanting to hire more women) as suggested in Flory et al. (2010) and Niederle
and Vesterlund (2007).32 Competition is likely more salient in the context of this experiment

31Appendix figure A3 suggests that there is little evidence of female CAs responding to the performance pay
incentive at any point in the CA performance distribution, though we do not have power to perform valid
statistical tests.

32Niederle and Vesterlund (2007) find that women shy away from competition in particular when competing
with men. In our context, this would lead women to either not make a referral or refer poorly qualified men.
than in other employment contexts where existing employees make referrals, though we note that competition is certainly present there as well. Existing employees may fear the referral will perform better and make the CA look bad, or compete with the CA over promotions. Compared to our setting where the referral only marginally affects the likelihood of qualifying or getting called for a job (given the large number of recruits)33, competition on the job may actually be stronger.

Nevertheless, if women CAs are concerned about the competitive threat their referrals pose, they may choose to either forgo the finder’s fee (and not make a referral) or refer someone who is unlikely to qualify. We do not observe the former, as the referral rate is almost identical among women CAs and male CAs. However, the latter is consistent with the results presented in Table 4: in unrestricted treatments, women refer poor quality men and women. However, several additional pieces of evidence seem inconsistent with the competition aversion hypothesis. Figure 7 shows suggestive evidence that women who are on the margin of qualification (near a score of 60) are if anything more likely to refer someone who is qualified. Second, Tables 4 and 5 suggest that women have a hard time anticipating who will qualify. In that case, referring low quality people instead of just not making a referral is a very risky strategy. Finally, we also discuss a direct test of the role of competition in the Appendix: in an additional cross-randomized treatment, we experimentally varied whether the CA was directly competing with their referral. We find no differences in the quality of the referrals as shown in Appendix Table 3.

While there are overall a few patterns in the data that suggest competition-aversion is not the only factor driving women to refer low quality candidates, we do not have conclusive evidence that rules out competition as a contributing factor. Given that in our experiment, women refer more able men than women, future research should explore this possibility as it could suggest that women need not always shy away from competing with men as in Niederle and Vesterlund (2007).

33On the median CA recruitment date, there were 61 CAs who applied at the same time; given that all CAs were asked to make a referral this renders one’s own referral just one competitor out of over 100 even ignoring CA beliefs about other recruitment dates.
7 Conclusion

There is a large literature in economics and sociology which has used observational data to suggest that women benefit less from job networks than men do (Ioannides and Loury, 2004). Using an experiment designed around a recruitment drive for real-world jobs, we provide evidence that the use of referral systems can put women at a disadvantage. We find that qualified women tend not to be referred by networks. Much of this difference occurs as men exhibit a preference for referring men. We document that men’s preference to refer other men cannot be fully explained by scarcity of women, or by efforts to find the highest ability worker: instead, aspects of the social environment contribute to women’s disadvantage. We also document that using women to make referrals is similarly unsuccessful at identifying high ability female workers. While women CAs in our experiment do not exhibit the gender preference that men do, they do refer people (and particularly women) who are not very likely to qualify for positions. This result suggests that the ubiquity of job networks as a hiring system could contribute to persistent gender gaps in labor market outcomes. As with any experiment, our results are only internally valid for our sample, enumerator applicants in Malawi. However, given that they closely mirror stylized facts about gender and networks which are based on a wealth of observational studies primarily in the US and Europe, there is reason to believe that our findings may generalize to many other contexts.

References

34Most recently, Lalanne and Seabright (2011) find that male executives in the US and Europe have salaries which increase in numbers of executive contacts, while female executives do not receive this benefit.

Table 1: Gender Distributions of CAs and Referrals

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All CAs</td>
<td>Male CAs</td>
<td>Female CAs</td>
<td>Diff: (p) value</td>
</tr>
<tr>
<td>Fraction of CAs</td>
<td>1</td>
<td>63%</td>
<td>38%</td>
</tr>
<tr>
<td>CA is Qualified</td>
<td>53%</td>
<td>56%</td>
<td>48%</td>
</tr>
<tr>
<td>N</td>
<td>768</td>
<td>480</td>
<td>288</td>
</tr>
</tbody>
</table>

B. CA Characteristics: Either Gender Treatments

Referral is Female	31%	25%	45%	0.004
Referral is Qualified	48%	55%	38%	0.020
Referral is Qualified Male	33%	42%	21%	0.003
Referral is Qualified Female	15%	14%	17%	0.518
N	186	110	76	

D. Referral Characteristics, Fixed Fee Treatments

Referral is Female	34%	26%	44%	0.051
Referral is Qualified	50%	58%	37%	0.028
Referral is Qualified Male	33%	42%	21%	0.020
Referral is Qualified Female	17%	17%	17%	0.972
N	113	65	48	

E. Referral Characteristics, Perf Treatments

Referral is Female	32%	22%	46%	0.031
Referral is Qualified	47%	51%	39%	0.331
Referral is Qualified Male	34%	42%	21%	0.070
Referral is Qualified Female	12%	9%	18%	0.263
N	73	45	28	
Table 2: Male CA’s Referral Choices

<table>
<thead>
<tr>
<th></th>
<th>Made a Referral</th>
<th>Referral Qualifies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Female Treatment</td>
<td>-0.004</td>
<td>-0.004</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td>(0.050)</td>
</tr>
<tr>
<td>Either Gender Treatment</td>
<td>0.014</td>
<td>-0.052</td>
</tr>
<tr>
<td></td>
<td>(0.040)</td>
<td>(0.052)</td>
</tr>
<tr>
<td>Performance Pay</td>
<td>-0.148 ***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.056)</td>
<td></td>
</tr>
<tr>
<td>Perf Pay * Female Treatment</td>
<td>0.004</td>
<td>-0.265 **</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td></td>
</tr>
<tr>
<td>Perf Pay * Either Treatment</td>
<td>0.152 *</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.079)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>506</td>
<td>506</td>
</tr>
<tr>
<td>Mean of excluded group</td>
<td>0.840</td>
<td>0.892</td>
</tr>
</tbody>
</table>

Notes
1. The dependent variable in columns (1)-(2) is an indicator for whether the CA makes a referral and in (3)-(4) an indicator for whether the referral qualifies.
2. All specifications include CA visit day dummies.
<table>
<thead>
<tr>
<th>Survey Experience</th>
<th>Tertiary Education</th>
<th>Math Score</th>
<th>Language Score</th>
<th>Ravens Score</th>
<th>Computer Score</th>
<th>Practical Exam Score</th>
<th>Feedback Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
<td>(8)</td>
</tr>
<tr>
<td>Female Referral Treatment</td>
<td>-0.030</td>
<td>0.022</td>
<td>0.003</td>
<td>-0.109</td>
<td>-0.086</td>
<td>0.075</td>
<td>1.023 *</td>
</tr>
<tr>
<td></td>
<td>(0.066)</td>
<td>(0.072)</td>
<td>(0.135)</td>
<td>(0.199)</td>
<td>(0.186)</td>
<td>(0.358)</td>
<td>(0.620)</td>
</tr>
<tr>
<td>Either Gender Treatment</td>
<td>0.025</td>
<td>0.028</td>
<td>-0.028</td>
<td>0.074</td>
<td>0.062</td>
<td>0.574</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>(0.068)</td>
<td>(0.075)</td>
<td>(0.140)</td>
<td>(0.206)</td>
<td>(0.192)</td>
<td>(0.370)</td>
<td>(0.644)</td>
</tr>
<tr>
<td>Performance Pay</td>
<td>0.082</td>
<td>0.039</td>
<td>0.134</td>
<td>0.042</td>
<td>0.153</td>
<td>0.915</td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td>(0.076)</td>
<td>(0.084)</td>
<td>(0.157)</td>
<td>(0.231)</td>
<td>(0.216)</td>
<td>(0.415)</td>
<td>(0.714)</td>
</tr>
<tr>
<td>Perf Pay * Female Treatment</td>
<td>-0.071</td>
<td>0.060</td>
<td>-0.313</td>
<td>-0.079</td>
<td>-0.186</td>
<td>-0.815</td>
<td>-1.094</td>
</tr>
<tr>
<td></td>
<td>(0.103)</td>
<td>(0.113)</td>
<td>(0.213)</td>
<td>(0.313)</td>
<td>(0.293)</td>
<td>(0.562)</td>
<td>(0.962)</td>
</tr>
<tr>
<td>Perf Pay * Either Treatment</td>
<td>-0.175</td>
<td>-0.066</td>
<td>-0.069</td>
<td>-0.198</td>
<td>-0.171</td>
<td>-0.788</td>
<td>-1.370</td>
</tr>
<tr>
<td></td>
<td>(0.106)</td>
<td>(0.116)</td>
<td>(0.218)</td>
<td>(0.322)</td>
<td>(0.300)</td>
<td>(0.577)</td>
<td>(0.991)</td>
</tr>
</tbody>
</table>

Notes
1 The dependent variable is listed in the column heading.
2 All specifications include CA visit day dummies.
Table 4: Female CA’s Referral Choices

<table>
<thead>
<tr>
<th></th>
<th>Made a Referral</th>
<th>Referral Qualifies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Female Referral Treatment</td>
<td>-0.055</td>
<td>-0.042</td>
</tr>
<tr>
<td></td>
<td>(0.054)</td>
<td>(0.074)</td>
</tr>
<tr>
<td>Either Gender Treatment</td>
<td>0.017</td>
<td>-0.024</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>Performance Pay</td>
<td>-0.113</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td></td>
</tr>
<tr>
<td>Perf Pay * Female Treatment</td>
<td>-0.013</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td></td>
</tr>
<tr>
<td>Perf Pay * Either Treatment</td>
<td>0.086</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.110)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td>Mean of Excluded Group</td>
<td>0.821</td>
<td>0.852</td>
</tr>
</tbody>
</table>

Notes
1. The dependent variable in columns (1)-(2) is an indicator for whether the CA makes a referral and in (3)-(4) an indicator for whether the referral qualifies.
2. All specifications include CA visit day dummies.
Table 5: Screening of Female CAs on Different Characteristics

<table>
<thead>
<tr>
<th>Survey Experience</th>
<th>Tertiary Education</th>
<th>Math Score</th>
<th>Language Score</th>
<th>Ravens Score</th>
<th>Computer Score</th>
<th>Practical Exam Score</th>
<th>Feedback Points</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>Female Referral Treatment</td>
<td>0.034</td>
<td>0.187</td>
<td>* -0.401</td>
<td>** -1.124</td>
<td>*** -0.584</td>
<td>** -0.491</td>
<td>0.803</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
<td>(0.101)</td>
<td>(0.198)</td>
<td>(0.314)</td>
<td>(0.251)</td>
<td>(0.497)</td>
<td>(0.894)</td>
</tr>
<tr>
<td>Either Gender Treatment</td>
<td>0.054</td>
<td>0.038</td>
<td>-0.298</td>
<td>-0.184</td>
<td>-0.384</td>
<td>-0.126</td>
<td>0.147</td>
</tr>
<tr>
<td></td>
<td>(0.080)</td>
<td>(0.096)</td>
<td>(0.188)</td>
<td>(0.298)</td>
<td>(0.238)</td>
<td>(0.471)</td>
<td>(0.846)</td>
</tr>
<tr>
<td>Performance Pay</td>
<td>0.266 ***</td>
<td>0.146</td>
<td>** -0.458</td>
<td>** -0.439</td>
<td>-0.249</td>
<td>0.416</td>
<td>2.111 **</td>
</tr>
<tr>
<td></td>
<td>(0.094)</td>
<td>(0.113)</td>
<td>(0.220)</td>
<td>(0.349)</td>
<td>(0.279)</td>
<td>(0.553)</td>
<td>(1.008)</td>
</tr>
<tr>
<td>Perf Pay * Female Treatment</td>
<td>-0.317 **</td>
<td>-0.343</td>
<td>** 0.497</td>
<td>1.200 **</td>
<td>0.717 *</td>
<td>-0.096</td>
<td>-1.695</td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(0.155)</td>
<td>(0.304)</td>
<td>(0.481)</td>
<td>(0.384)</td>
<td>(0.761)</td>
<td>(1.382)</td>
</tr>
<tr>
<td>Perf Pay * Either Treatment</td>
<td>-0.226 *</td>
<td>-0.062</td>
<td>0.457</td>
<td>0.559</td>
<td>-0.042</td>
<td>-0.253</td>
<td>-1.697</td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(0.155)</td>
<td>(0.302)</td>
<td>(0.479)</td>
<td>(0.382)</td>
<td>(0.758)</td>
<td>(1.375)</td>
</tr>
<tr>
<td>Mean of Dep Variable</td>
<td>0.194</td>
<td>0.642</td>
<td>1.831</td>
<td>7.524</td>
<td>1.614</td>
<td>4.724</td>
<td>16.093</td>
</tr>
<tr>
<td>SD</td>
<td>(0.396)</td>
<td>(0.480)</td>
<td>(0.932)</td>
<td>(1.508)</td>
<td>(1.196)</td>
<td>(2.393)</td>
<td>(4.048)</td>
</tr>
<tr>
<td>Observations</td>
<td>253</td>
<td>254</td>
<td>254</td>
<td>254</td>
<td>254</td>
<td>248</td>
<td>248</td>
</tr>
</tbody>
</table>

Notes
1. The dependent variable is listed in the column heading.
2. All specifications include CA visit day dummies.
Figure 1: CA Ability by Gender

Figure 2: % of Candidates who are Women
Figure 3: Gender choice in referrals, by CA performance

Figure 4: Men’s Fixed Fee Referrals

Figure 5: Referral Qualifies, by Male CA performance
Figure 6: % of Candidates who Qualify

Figure 7: Referral qualification rate, by CA performance
A Appendix

A.1 Proofs

A.1.1 Proposition 1

First, note that under scarcity, \(\psi(F_i, P_i) = N^0_M (F_i, P_i) / \left(N^0_F (F_i, P_i) + N^0_M (F_i, P_i) \right) \), so that \(N^0_F (F_i, P_i) / N^0_M (F_i, P_i) = (1 - \psi(F_i, P_i)) / \psi(F_i, P_i) \). Second, note that \(E[N^G] = N_G \Pi^G (F_i, P_i) \) so that \(N_F / N_M = (\Pi^M (F_i, P_i) / \Pi^F (F_i, P_i)) \times E \left[(N^0_F (F_i, P_i) / N^0_M (F_i, P_i)) \right] \). Taking expectations and plugging back in for \(N^0_F (F_i, P_i) / N^0_M (F_i, P_i) \), we have that

\[
\frac{N_F}{N_M} = \frac{\Pi^M (F_i, P_i) (1 - \psi(F_i, P_i))}{\Pi^F (F_i, P_i) \psi(F_i, P_i)} \tag{1}
\]

Finally, note that \(E[1 - R_i | \text{gender } G, F_i, P_i] = (1 - \Pi^G (F_i, P_i))^{N_G} \), so that if male CA’s decline to make a referral \(A \) times as frequently when referring women, we have

\[
(1 - \Pi^F (F_i, P_i))^N_F = A (1 - \Pi^M (F_i, P_i))^N_M
\]

or

\[
N_F \log (1 - \Pi^F (F_i, P_i)) = \log A + N_M \log (1 - \Pi^M (F_i, P_i)) \tag{2}
\]

Solving for \(N_F / N_M \), we have

\[
\frac{N_F}{N_M} = \frac{1}{N_M} \log A + \log (1 - \Pi^M (F_i, P_i)) \tag{3}
\]

Substituting in from 1, we find

\[
\frac{(1 - \psi(F_i, P_i))}{\psi(F_i, P_i)} = \frac{\Pi^F (F_i, P_i) \log (1 - \Pi^M (F_i, P_i)) + \frac{1}{N_M} (\Pi^F (F_i, P_i) / \Pi^M (F_i, P_i)) \log A}{\log (1 - \Pi^F (F_i, P_i))} \tag{4}
\]

Define \(\gamma = \frac{1}{N_M} (\Pi^F (F_i, P_i) / \Pi^M (F_i, P_i)) / \log (1 - \Pi^F (F_i, P_i)) \), which is less than 0 since \(1 - \Pi^F (F_i, P_i) < 1 \) and other expressions in \(\gamma \) are positive.
A.1.2 Proposition 2

Some notation: $k >_P j$ suggests that person k is preferred under contract (F_i, P) to person j. Thus, person $k >_0 j$ implies that k is preferred under fixed fee contracts to person j. First, note

$$j >_P k \Rightarrow \alpha_j > E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k + P_t \left(\Phi \left(\frac{c - Q_j}{\sigma_j^2} \right) - \Phi \left(\frac{c - Q_k}{\sigma_k^2} \right) \right) \tag{6}$$

If person k is preferred under fixed, then

$$\alpha_j < E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k \tag{7}$$

Thus, if $j >_P k$ and $k >_0 j$, it must be the case that $\Phi \left(\frac{c - Q_j}{\sigma_j^2} \right) < \Phi \left(\frac{c - Q_k}{\sigma_k^2} \right)$, or that $Q_j > Q_k$. Thus, Q is non-decreasing in P_t, and since $Y = Q + \varepsilon$ (and ε is independent of Q), so is Y.

Next, note that since draws are independent, $P(j <_0 k | l <_0 k) = P(j <_0 k)$. Thus

$$P(Y_p > Y_F) = 1 - P(\text{no one is better under } P \text{ than } Y_k | k \text{ is best under fixed}) = 1 - P(1 <_P k | k \text{ is best under fixed}) P(2 < P k | k \text{ is best under fixed}) \cdots \tag{8}$$

so that

$$P(k >_P j) = \left[\frac{\int_{Q_k}^{Q_j} \int_{-\infty}^{\infty} E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k f^\theta(\alpha, Q_j) d\alpha dQ_j + \int_{-\infty}^{Q_k} \int_{-\infty}^{\infty} E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k f^\theta(\alpha, Q_j) d\alpha dQ_j}{\int_{Q_k}^{Q_j} \int_{-\infty}^{\infty} E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k f^\theta(\alpha, Q_j) d\alpha dQ_j} \right] \tag{9}$$

and

$$P(k >_P j) = \left[\frac{\int_{Q_k}^{Q_j} \int_{-\infty}^{\infty} E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k f^\theta(\alpha, Q_j) d\alpha dQ_j + \int_{-\infty}^{Q_k} \int_{-\infty}^{\infty} E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k f^\theta(\alpha, Q_j) d\alpha dQ_j}{\int_{Q_k}^{Q_j} \int_{-\infty}^{\infty} E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k f^\theta(\alpha, Q_j) d\alpha dQ_j} \right] \tag{10}$$

and

$$P\left(Y_{Q_P} > Y_{Q_0}\right) = 1 - \left[\frac{\int_{Q_k}^{Q_j} \int_{-\infty}^{\infty} E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k f^\theta(\alpha, Q_j) d\alpha dQ_j + \int_{-\infty}^{Q_k} \int_{-\infty}^{\infty} E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k f^\theta(\alpha, Q_j) d\alpha dQ_j}{\int_{Q_k}^{Q_j} \int_{-\infty}^{\infty} E[R(Y_k) | Q_k] - E[R(Y_j) | Q_j] + \alpha_k f^\theta(\alpha, Q_j) d\alpha dQ_j} \right] \tag{11}$$
For Proposition 2, notice that equation 11 = 0 iff \(N_G = 1\) or

\[
\int_{Q_k}^{\infty} \int_{-\infty}^{\infty} \left[E[R(Y_k)|Q_k] - E[R(Y_j)|Q_j] \right] + \alpha_k + P_i \left(\Phi \left(\frac{c-Q_j}{\sigma_j^e} \right) - \Phi \left(\frac{c-Q_k}{\sigma_k^e} \right) \right) f^g(\alpha_j, Q_j) \, d\alpha_j \, dQ_j
\]

\(= \int_{Q_k}^{\infty} \int_{-\infty}^{\infty} f^g(\alpha_j, Q_j) \, d\alpha_j \, dQ_j \)

(12)

For this not to hold, we would need

\[
\int_{Q_k}^{\infty} \int_{-\infty}^{\infty} \left[E[R(Y_k)|Q_k] - E[R(Y_j)|Q_j] \right] + \alpha_k
\]

\[
= \int_{Q_k}^{\infty} \int_{-\infty}^{\infty} f^g(\alpha_j, Q_j) \, d\alpha_j \, dQ_j
\]

\(> 0 \)

(13)

As \(\sigma^g_\varepsilon \to \infty\), expression 13 converges to 0. For fixed \(\sigma^g_\varepsilon < \infty\), it is the density expression which motivates condition (ii) in proposition 2. As this holds for any possible \((\alpha_k, Q_k)\) s.t. \(k > 0 \) \(j \in G\), proposition 2 is satisfied.

A.1.3 Proposition 3

If \(j > p \) and \(k > 0 \), then as before we are guaranteed that \(\Phi \left(\frac{c-Q_j}{\sigma_j^M} \right) < \Phi \left(\frac{c-Q_k}{\sigma_k^F} \right)\). If \(\sigma^W_\varepsilon = \sigma^M_\varepsilon\), then we are guaranteed by a similar proof as proposition 2 that referral quality is non-decreasing in performance pay and that an analogous proposition holds. If there is a performance premium in at least one of the genders \(G\), then by proposition 2 we are guaranteed that \(N_G > 1\) and \(\sigma^G_\varepsilon < \infty\) which, again under proposition 2, suggests that the choice of referrals in the unrestricted network should be improving in quality so long as density condition (ii) is met in both genders. However, if \(j \in M_i\) and \(k \in F_i\) and \(\sigma^M_\varepsilon < \sigma^F_\varepsilon\), then we are no longer guaranteed that \(Q_j > Q_k\) since \(\exists Q_k > Q_j\) s.t. \(\Phi \left(\frac{c-Q_j}{\sigma_j^M} \right) < \Phi \left(\frac{c-Q_k}{\sigma_k^F} \right)\). As a result, there remain monotonicity predictions on qualification probability, but not on referral quality.
A.2 Appendix Tables and Figures

Appendix Table 1: Summary Statistics and Randomization Check

<table>
<thead>
<tr>
<th>Dependent Variable</th>
<th>Mean and SD: Male</th>
<th>p value of joint test of treatments</th>
<th>N</th>
<th>Mean and SD: Female</th>
<th>p value of joint test of treatments</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA Age</td>
<td>25.52</td>
<td>0.610</td>
<td>469</td>
<td>24.47</td>
<td>0.775</td>
<td>290</td>
</tr>
<tr>
<td>CA qualified</td>
<td>0.54</td>
<td>0.354</td>
<td>506</td>
<td>0.48</td>
<td>0.641</td>
<td>309</td>
</tr>
<tr>
<td>CA Overall Test Score (corrected)</td>
<td>61.31</td>
<td>0.567</td>
<td>506</td>
<td>59.68</td>
<td>0.121</td>
<td>309</td>
</tr>
<tr>
<td>CA Has Previous Survey Experience</td>
<td>0.30</td>
<td>0.524</td>
<td>505</td>
<td>0.27</td>
<td>0.120</td>
<td>308</td>
</tr>
<tr>
<td>CA Has Tertiary Education</td>
<td>0.68</td>
<td>0.274</td>
<td>506</td>
<td>0.76</td>
<td>0.165</td>
<td>309</td>
</tr>
<tr>
<td>CA MSCE Math Score</td>
<td>5.66</td>
<td>0.814</td>
<td>443</td>
<td>6.81</td>
<td>0.054</td>
<td>261</td>
</tr>
<tr>
<td>CA MSCE English Score</td>
<td>5.68</td>
<td>0.787</td>
<td>459</td>
<td>5.76</td>
<td>0.394</td>
<td>275</td>
</tr>
<tr>
<td>CA Job Comprehension Score</td>
<td>0.79</td>
<td>0.840</td>
<td>506</td>
<td>0.80</td>
<td>0.380</td>
<td>310</td>
</tr>
<tr>
<td>CA Math Score</td>
<td>0.21</td>
<td>0.263</td>
<td>506</td>
<td>0.18</td>
<td>0.327</td>
<td>310</td>
</tr>
<tr>
<td>CA Ravens Score</td>
<td>0.61</td>
<td>0.213</td>
<td>506</td>
<td>0.55</td>
<td>0.666</td>
<td>310</td>
</tr>
<tr>
<td>CA Language Score</td>
<td>0.15</td>
<td>0.250</td>
<td>506</td>
<td>0.14</td>
<td>0.785</td>
<td>310</td>
</tr>
<tr>
<td>CA Practical Component Z-score</td>
<td>-0.11</td>
<td>0.070</td>
<td>502</td>
<td>0.19</td>
<td>0.057</td>
<td>306</td>
</tr>
<tr>
<td>CA Computer Score</td>
<td>0.44</td>
<td>0.843</td>
<td>506</td>
<td>0.42</td>
<td>0.444</td>
<td>310</td>
</tr>
<tr>
<td>CA Feedback Points</td>
<td>25.84</td>
<td>0.018</td>
<td>500</td>
<td>27.97</td>
<td>0.151</td>
<td>306</td>
</tr>
</tbody>
</table>

Notes

1. The displayed p value is from the joint test of all the treatment variables and their interactions from a regression of the dependent variable listed at the left on indicators for each treatment and CA visit day controls. The regressions are done separately for men and women.

2. All specifications include CA visit day dummies.
Appendix Table 2: Scarcity Bounds

<table>
<thead>
<tr>
<th>Number of Women (N_F)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Fixed Fee</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Implied Π^F</td>
<td>0.89</td>
<td>0.668</td>
<td>0.521</td>
</tr>
<tr>
<td>Maximum Implied ψ if $\Pi^M = 0.001$</td>
<td>0.713</td>
<td>0.623</td>
<td>0.585</td>
</tr>
<tr>
<td>Implied ψ if $\Pi^M = 0.1 * \Pi^F$</td>
<td>0.703</td>
<td>0.615</td>
<td>0.579</td>
</tr>
<tr>
<td>Implied ψ if $\Pi^M = 0.25 * \Pi^F$</td>
<td>0.687</td>
<td>0.602</td>
<td>0.569</td>
</tr>
<tr>
<td>Implied ψ if $\Pi^M = 0.5 * \Pi^F$</td>
<td>0.652</td>
<td>0.576</td>
<td>0.549</td>
</tr>
<tr>
<td>Implied ψ if $\Pi^M = 0.75 * \Pi^F$</td>
<td>0.600</td>
<td>0.543</td>
<td>0.527</td>
</tr>
<tr>
<td>Implied ψ if $\Pi^M = \Pi^F$</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Actual ψ: 0.77</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Performance Pay			
Implied Π^F	0.74	0.490	0.362
Maximum Implied ψ if $\Pi^M \geq 0.001$	0.645	0.579	0.554
Implied ψ if $\Pi^M = 0.1 * \Pi^F$	0.637	0.573	0.549
Implied ψ if $\Pi^M = 0.25 * \Pi^F$	0.622	0.563	0.542
Implied ψ if $\Pi^M = 0.5 * \Pi^F$	0.593	0.545	0.530
Implied ψ if $\Pi^M = 0.75 * \Pi^F$	0.555	0.524	0.515
Implied ψ if $\Pi^M = \Pi^F$	0.5	0.5	0.5
Actual ψ: 0.79			
Notes: Both figures contain only data on CAs. Session is equal to 1 on the first day we were interviewing in a given center: either Lilongwe Center 1, 2 or in Blantyre. The size of the circles reflect the relative size of the sample at each session / training centre.
A.3 Competition

In order to directly look at the role of competition in referral decisions, we experimentally varied how salient competition was to CAs. CAs were told the qualification threshold was either (i) determined using an absolute standard (receiving a score greater than 60) or (ii) in relative terms (scoring in the top half of applicants). Table A3 shows that referrals, both men and women, are not statistically less likely to qualify when CAs are directly competing with their referrals to become qualified. While this treatment should not alter perceptions of competition in the post-qualification phase, and is therefore a fairly weak test, it provides suggestive evidence that, on average, competition is unlikely to be driving our main results.
Appendix Table 3: Competition Incentives in the Fixed Fee Treatments

<table>
<thead>
<tr>
<th></th>
<th>CA Qualifies</th>
<th>Referral Qualifies</th>
<th>Referral Qualifies</th>
<th>CA Qualifies</th>
<th>Referral Qualifies</th>
<th>Referral Qualifies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Competitive Treatment</td>
<td>-0.073</td>
<td>0.065</td>
<td>0.043</td>
<td>0.019</td>
<td>0.047</td>
<td>0.092</td>
</tr>
<tr>
<td></td>
<td>(0.060)</td>
<td>(0.065)</td>
<td>(0.117)</td>
<td>(0.083)</td>
<td>(0.089)</td>
<td>(0.152)</td>
</tr>
<tr>
<td>Female Treatment</td>
<td>0.099</td>
<td></td>
<td>0.176</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.113)</td>
<td>(0.119)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Either Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.267 *</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.153)</td>
</tr>
<tr>
<td>Competitive * Female Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.138</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.159)</td>
</tr>
<tr>
<td>Competitive * Either Treatment</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(0.166)</td>
</tr>
</tbody>
</table>

| Observations | 288 | 255 | 255 | 176 | 151 | 151 |
| CA Gender | Men | Men | Men | Women | Women | Women |

Notes

1. The dependent variable is indicated in the column heading.
2. All specifications include CA visit day dummies.