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ABSTRACT
In many developing country environments, it is difficult or impos-
sible to obtain recent, reliable estimates of human development.
Nationally representative household surveys, which are the stan-
dard instrument for determining development policy and priorities,
are typically too expensive to collect with any regularity. Recently,
however, researchers have shown the potential for remote sensing
technologies to provide a possible solution to this data constraint.
In particular, recent work indicates that satellite imagery can be
processed with deep neural networks to accurately estimate the
sub-regional distribution of wealth in sub-Saharan Africa.

In this paper, we explore the extent to which the same approach—
of using convolutional neural networks to process satellite imagery—
can be used to measure a broader set of human development in-
dicators, in a broader range of geographic contexts. Our analysis
produces three main results: First, we successfully replicate prior
work showing that satellite images can accurately infer a wealth-
based index of poverty in sub-Saharan Africa. Second, we show
that this approach can generalize to predicting poverty in other
countries and continents, but that the performance is sensitive to
the hyperparameters used to tune the learning algorithm. Finally,
we find that this approach does not trivially generalize to predict-
ing other measures of development such as educational attainment,
access to drinking water, and a variety of health-related indicators.
We discuss in detail whether these findings represent a fundamen-
tal limitation of this approach, or could be fixed through more
concerted adaptations of the machine learning environment.
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1 INTRODUCTION AND RELATEDWORK
At the United Nations Summit in September 2016, theworld commit-
ted to the 2030 Agenda for Sustainable Development. The agenda
lists the 17 Sustainable Development Goals (SDGs) that balance
three key aspects of sustainable development: economic, social,
and environmental [20]. The 2030 agenda particularly stresses the
need to track more than just country-level Gross Domestic Product
(GDP). This requires more timely, reliable, and appropriate ways of
collecting and interpreting information on a broad range of human
development outcomes.

Measuring human development has long been a focus of inter-
national development research and policy [5, 10, 11, 22]. Timely
and accurate data can assist government actors in optimally target-
ing policies and efficiently allocating resources [4]. In the context
of the SDGs, it can also provide a useful benchmark for progress,
and assist in evaluation of policies. Unfortunately, reliable data
is typically very expensive to collect, and thus a major obstacle
to effective policy design has been the lack of timely and reliable
socioeconomic data [16].

In the past several years, recent developments in machine learn-
ing and geospatial analysis have enabled novel data-intensive ap-
proaches to the measurement of poverty [7]. Early work relied
on satellite “night-lights” data, and showed that regions emitting
high levels of artificial light tended to have higher economic output
[9, 14]. For instance, Mellander et al. [18] show that such data cor-
relates closely with wage income in Sweden (R2=0.70), and Noor et
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al. [21] show that nighttime luminosity correlates with asset-based
measures of wealth in 37 African countries. However, this approach
generally under-performs in low income regions, because the stable
light level often cannot be distinguished from the noise in the data
[9]. For example, Jean et al. [15] show that night-lights alone do a
poor job of differentiating between poor and ultra-poor regions in
sub-Saharan Africa.

The limitations of night-lights data, particularly in poor rural
areas, inspired recent papers that use daytime satellite imagery
[15, 26], raster and vector datasets [23], and mobile phone data
[6] to measure poverty in developing countries. One particularly
effective approach was recently developed by Jean et al. [15], who
use a two-step transfer learning framework to estimate sub-regional
levels of asset- and consumption-based poverty in five countries in
sub-Saharan Africa. They show that the transfer learning approach
outperforms the predictions of night-lights data, improving R2 by at
least 0.10 in more than 70% of independent trials. These results have
captured the imagination of many in the development community,
as the method utilizes only publicly available data and open source
software [19].

The focus of the current paper is to “stress test” the generalizabil-
ity of this general approach to measuring human development with
satellite imagery, to build a more robust evidence base for those
wishing to apply these methods in a broader range of development
contexts. Specifically, we wish to better understand whether an
analogous approach can be used to predict a broader range of out-
comes beyond wealth and expenditures, and in particular, whether
satellite imagery can also accurately predict key development indi-
cators such as levels of education, access to clean drinking water,
and health-related outcomes. We also seek to test whether the same
approach can effectively estimate poverty (and other measures
of development) in countries outside of sub-Saharan Africa, for
instance in the Caribbean or in South Asia.

Our analysis produces several novel results. We begin by repli-
cating the experiments performed by Jean et al., and show that the
transfer learning approach can indeed be used to reconstruct accu-
rate wealth indexes in sub-Saharan Africa. We then show that with
only modest adaptations, the same formula can be used to achieve
reasonable, though attenuated, performance in predicting wealth
outside of Africa. However, we find that performance degrades very
quickly when trying to use this method to recover other measures
of human development. We also show that the performance of the
algorithm is sensitive to the hyperparameters used to train the neu-
ral network; we interpret this as a cautionary tale that one should
not expect to be able to use these algorithms “out of the box,” and
that they cannot be applied without careful tuning.

Our primary conclusion is thus that this approach to estimat-
ing poverty from satellite imagery does not trivially generalize to
other measures of human development in other countries. This is a
cautionary example to many who look with great optimism to the
potential for remote sensing technologies to solve data constraints
in international development. However, whether this represents a
fundamental limitation of the approach (for instance, that there is
simply not enough information in satellite data to infer levels of
eduction) or a shortfall of our current efforts (for instance, that the
algorithms must be adapted) is an important topic of discussion we

return to in the pages that follow, and a question that we hope can
motivate future research in this area.

2 DATA
Our analysis leverages data from three different sources. These
datasets are summarized in Table 1 and described in turn below.

2.1 Demographic and Health Surveys (DHS)
We rely on the Demographic and Health Surveys (DHS) as a mea-
sure of “ground truth” for development outcomes. These nationally-
representative household survey data are collected in 90 countries
worldwide. In a typical DHS, tens of thousands of households are
surveyed on a wide variety of demographic, social, economic, and
health-related outcomes [25]. The approximate location of each
household is recorded, and the public data is released with a geo-
graphic “cluster” assigned to each household. We downloaded the
most recent version of the Standard DHS data for four different
countries: Rwanda (2010), Nigeria (2013), Haiti (2012), and Nepal
(2011). The first panel of Table 1 provides summary statistics of the
DHS data in each of these four countries.

Each DHS contains hundreds of questions. We focus our analysis
on the following subset of questions in the DHS, which are intended
to capture a broad range of development indicators in the spirit of
the Sustainable Development Goals.

Wealth. TheDHS survey data provides a continuous-scalewealth
index, calculated through principal component analysis of a diverse
set of easy-to-measure survey items which relate to a household’s
wealth. Components cumulatively measure asset ownership (such
as televisions and bicycles), housing quality (e.g., construction ma-
terials), and access to utilities such as water and sanitation facili-
ties [12]. We used this wealth index as it was reported in the DHS
records for each cluster.

Education. The most reliable measure of household education
captured by the DHS is the highest level of education attained by
the survey respondent. In most cases, this respondent was a head
of household (>95% of the time for Rwanda, Haiti, and Nepal). Our
“education index” therefore roughly measures the typical level of ed-
ucation of the head of a household within a cluster. This is reported
as one of four levels: “No education”, “Primary”, “Secondary”, and
“Higher”. Any member below the lower age limit for the education
questions was classified in the “No education” category. We assign
an ordinal value between 0 and 3 to these categories, from “No ed-
ucation” to “Higher”. Within each DHS cluster, the education index
was computed as the average of this ordinal value of education
level across all households.

Access to Water. The DHS captures the time it would take for a
household member to reach a source of drinking water, in minutes.
This value ranges from 1 minute to 500 minutes. For all the house-
holds that use piped-water, rainwater, have water-well in residence,
or use bottled water, we assign them a value of 0.

Health Indices. The DHS captures rich information on health
outcomes. We focus on three indices: the average hemoglobin level
adjusted by altitude of all household adults (in g/dl), the average
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Dataset Rwanda Nigeria Haiti Nepal

Panel A: Demographic and Health Survey Data (Source: DHS Program)

Years Collected 2010 2013 2012 2011
Number of clusters 492 896 445 289
Number of households 12,540 38,522 13,181 10,826

Panel B: Satellite Nightlights Data (Source: NOAA DMSP-OLS)

Number of 1x1km2 pixels 29,627 847,958 33,490 195,618
Low intensity pixels 28,579 793,643 29,731 186,360
Medium intensity pixels 955 51,390 3,592 9,133
High intensity pixels 93 2,925 167 125

Panel C: Daytime Satellite Imagery (Source Google Maps API)

Area covered (km2) 26,338 923,768 27,750 147,181
# images downloaded 29,627 1,036,956 33,490 195,618
# images in training set 26,665 112,425 30,141 176,057

Table 1: Primary datasets used in this study

body-mass-index (BMI) of the household’s females, and the average
number of mosquito bed nets per household.

Anthropometric Indices. These indices include the average height-
for-age percentile, the average weight-for-age percentile, and the
average weight-for-height percentile. Each is calculated by taking
the mean of all individual childrens’ measurements.

Electricity and Phones. Last, we study the percentage of house-
holds with access to electricity, and the percentage of households
with one or more mobile phones. To calculate these values, we
compute the fraction of households in a cluster who respond affir-
matively to the question.

2.2 Daytime satellite images
We downloaded millions of satellite images from the Google Static
Maps API (zoom level 16, pixel resolution 2.5m), which provide
the input to our algorithms. These images cover the land area of
Rwanda, Nigeria, Haiti, and Nepal, and are summarized in Panel B of
Table 1. The size of each downloaded image is set to 400×400 pixels
in order tomatch the land area covered by a single pixel of nighttime
lights data, which are much lower resolution and typically cover
1 km2 (more details below). We used shapefiles from the GADM
database to determine the boundaries of each country [1].

2.3 Nightlight luminosity data
We obtained the NOAA nighttime light images from the DMSP-OLS
website1 for both F16 and F18 satellites in 2010, 2011, 2012, and
2013, to match the years of the DHS data for Rwanda, Haiti, Nepal,
and Nigeria, respectively. The NOAA nighttime light intensity data
includes a discretized luminosity level from 0 to 63, with 0 being
the darkest pixel. We average the two satellites F16 and F18’s data
using ArcGIS software. Before using the nightlights data in the

1https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html

convolutional neural network, we remove gas flares2 and then
convert each pixel of light intensity into one of the three light
intensity classes: low (0), medium (1) and high (2). Following Jean
et al., we assigned the low intensity category to pixel values from
0 to 2, the medium intensity category to pixel values from 3 to 34,
and the high intensity category pixel values from 35 to 63.

3 METHODS
To predict development indicators from daytime satellite images,
we leverage a transfer learning process originally introduced by Xie
et al. [26] and refined by Jean et al. [15]. This process is summarized
in Figure 1. First, we calculate the average ground truth "welfare”
of each geographic cluster in a country, where a cluster is defined
by the DHS and is roughly equivalent to a rural village or urban
neighborhood, and welfare is defined using a variety of different
development indicators (such as wealth, education, and so forth)
that are collected in the DHS household survey. Second, we compute
satellite-based “features” for each cluster, by using a convolutional
neural network (CNN) to extract features from satellite imagery
covering the region in and around the cluster. This CNN is pre-
trained on ImageNet, and then fine-tuned to predict categories
of nighttime light intensity from daytime satellite images. Finally,
we use a ridge regression model to learn the functional mapping
from satellite features to development indicators at the cluster
level. The tuned CNN and linear model can then be used to predict
development indicators given arbitrary daytime satellite images.

3.1 “Ground truth” estimates of village welfare
Each household in the DHS data is assigned to a “cluster,” or a com-
munity. The DHS data includes 492 clusters for Rwanda, 445 for
Haiti, 289 clusters for Nepal, and 896 for Nigeria. The value of each
development indicator (see Section 2.1) for a cluster is computed

2Gas flares are demarcated in a separate shapefile available from NOAA [17].

https://ngdc.noaa.gov/eog/dmsp/downloadV4composites.html
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Figure 1: The transfer learning process used to predict development indicators from daytime satellite images. (1) A pre-trained
CNN is tuned to predict nighttime light intensity; (2) High-level visual features are extracted from the top layers of the tuned CNN; (3)
A linear model is trained to estimate a development indicator using ridge regression. (4) Given an arbitrary image, we can predict the
development indicator by feeding the extracted visual features into the trained linear model. We tune a separate CNN for each country, and
train a linear model to predict each development indicator for each country.

as the average across households within each geographic cluster,
weighting each household by sample weights provided in the DHS
survey to make the measurement representative. We discard 7 clus-
ters in Nigeria and 8 clusters in Haiti that were recorded with a
latitude and longitude of (0, 0), in addition to 59 other clusters in
Nigeria that are affected by gas flares.

3.2 Extracting features from satellite imagery
For each country, we trained a neural network to predict nighttime
light intensity using daytime satellite images. We started with a
CNN with VGG16 architecture that had been pre-trained to rec-
ognize objects from the ImageNet dataset. Then, for each country,
we fine-tuned the CNN to predict discretized nighttime light inten-
sity from input daytime images. Following prior work [15, 26], we
aimed to “teach” the network to recognize high-level visual features
that were correlated with economic well-being.

For Rwanda, Haiti, and Nepal, we split the full set of images
for each country into a training set (90% of the images) and a
validation set (10%). Similarly to Xie et al. [26], we up-sampled
images of high light intensity (classes 1 and 2) to enable balanced
representation across classes. In our case, we up-sampled until all
three classes of light intensity had the same number of training
samples.We observed poor performance classifying daytime images
with high nighttime light intensity without introducing this balance.
For Nigeria, we sampled 60,000 images from each class (up-sampling
classes 1 and 2) before splitting this sample into a training and
validation set. We chose the trade-off of training for dozens of
epochs over a subset of Nigeria’s image data, over a few epochs over
all one million images. We note that we were able to successfully
replicated Jean et al.’s performance on Nigeria, despite training
with only a sample of Nigeria’s images.

Then, we removed the fully-connected top layers from the CNN,
and added randomly-initialized, fully convolutional top layers as
described in Xie et al. [26]. The top layers were retrained to predict
nighttime light intensity. We determined that an initial learning

rate of 2 × 10−3, momentum of 0.9, and batch size of 100 were suf-
ficient for this first round of tuning for the upper layers. In each
epoch, we trained on the full training set. The learning rate was
decreased by a factor of two whenever the validation loss stopped
decreasing between epochs; tuning finished once the learning rate
dropped below 10−5. The hyperparameters for this stage were cho-
sen heuristically and imprecisely, as we only wanted to initialize
the top layers to more reasonable defaults than random values, and
the weights in these layers were expected to change further in the
following fine-tuning stages.

Next, we fine-tuned the full network, replicating the process
described in prior work [15, 26]. We augmented the image data by
mirroring each image horizontally. Like Xie et al., we began tuning
with a initial learning rate of 10−6. All convolutional layers had
L2 regularization of λ = 5 × 10−4, following the hyperparameter
settings from the original VGG paper [8]. We trained with a mo-
mentum of 0.9 and, due to hardware constraints, a batch size of 16.
While Xie et al. tuned the model for 300,000 iterations, we followed
the approach from the original VGG paper [8], decreasing the learn-
ing rate by a factor of ten whenever the validation loss stopped
decreasing. Training stopped once the learning rate dropped below
10−10. Whenever the learning rate decreased, training began again
from the model with minimum validation loss from the previous
learning rate, to avoid over-fitting.

In this way, we fine-tuned the CNN to predict nighttime light
intensity for both Haiti and Rwanda. While this was relatively quick
for Haiti and Rwanda, we used an alternative training process to
scale to the larger corpora of images from Nepal and Nigeria: we
skipped data augmentation, increased batch size to 32, and froze
almost all layers in the CNN, tuning only the top layers and the
last block of convolutional layers. Otherwise, the hyperparameters
remained the same. For Nigeria and Nepal, we stopped the training
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Figure 2: Satellite images and features. After fine-tuning, the
CNNs learned to recognize visual features indicating human pres-
ence, and even notable geographical features of each region. Each
row in the above subfigures represents a set of images that maxi-
mally “activate” filters from block 5 of each country’s CNNs.

after 200,000 batches (about two and a half days of runtime), as the
learning rate had not yet dropped below 10−10.3

After tuning the CNN, it can be thought of as a function that
maps raw satellite images to a set of “visual features,” by passing
images in as input and extracting the 16,384-dimensional vector
of activations in the top layer. These features are optimized by
the CNN to distinguish between regions of low, medium, and high
nighttime light intensity. Some intuition for these features is shown
in Figure 2. In the figure, we select a set of images that maximally
activate one of the convolutional layers in block 5 of the network.

3.3 Mapping satellite features to development
Through the steps described above, the DHS data can be used to
construct development indicators at the level of the cluster (our
“target” variable), and the CNN can produce 16,384-dimensional
feature vectors from each satellite image. We merge these two
datasets by first identifying all satellite images in a 10 × 10 cell of
images (10km2) surrounding each cluster centroid. Each image is
converted into a vector, and then, following prior work [15], the
100 image feature vectors from each cluster are averaged into a
single vector for each cluster (our ”predictor” variables).

The final step is to learn the functional mapping from the cluster-
level feature vector to the cluster-level development index. Per Table
1, the countries we analyze have between 289 and 896 such cluster-
level observations. We perform this modeling using a regularized
(ridge) regression model with five-fold cross validation. Regression
hyperparameters (i.e., the ridge coefficient) are chosen in an internal
(also five-fold) cross-validation loop. This model is fit separately in
each country, and for each development indicator. We report the
performance of each model as the average R2 across all held-out
folds in the outer cross-validation loop.

4 RESULTS
4.1 Wealth predictions in sub-Saharan Africa
Our first result involves replicating previously published results, to
ensure that subsequent results properly extend the current state of
the art. For this exercise, we applied the CNNs trained using the
transfer learning technique described in [15] and [26] to estimate
the asset-based wealth of villages (DHS clusters) in two countries
that were analyzed in prior work. From the five countries studied
in [15] (Malawi, Nigeria, Rwanda, Tanzania, Uganda), we focus on
Nigeria and Rwanda, which have very different socio-demographic
profiles.

Figure 3 illustrates our ability to replicate prior results in Rwanda
(the two graphs on the left) and Nigeria (the two graphs on the
right). In each country, we show the original result published in
Science (reprinted with permission from AAAS) as well as the re-
sults we achieve when reproducing the results from scratch. Each
scatter-plot contains one point for each of the clusters in the DHS

3We made this simplification to reduce the high computational cost involved in fully
re-training the CNN. To validate that this simplified tuning process—tuning only the
final convolutional layers of the CNN—did not significantly impact performance, we
show in Appendix Figure 8 that fine-tuning the block 5 convolutional layers without
data augmentation yields comparable results to the full training procedure described
by Jean et al. [15]. On the same test sets, we saw comparable performance (R2 within a
few hundredths or less) in Haiti and Rwanda for estimating wealth, level of education,
and access to water.
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Figure 3: Predicting wealth from satellite imagery in sub-Saharan Africa.We replicated Jean et al.’s finding that a DHS asset index
can be predicted with an R2 value of about 70%. In each pair of plots, the plot on the left shows the per-cluster expected and predicted asset
scores from Jean et al. The plots on the right of each pair shows our model’s performance for the asset index on the same clusters from
Rwanda and Nigeria. The figures on the left are reproduced from Jean et al., “Combining satellite imagery and machine learning to predict
poverty”, Science [15]. Reprinted with permission from AAAS.

Figure 4: Predicting level of education, access to electricity and water, and health outcomes in Rwanda. Prediction performance
varies widely for different development indicators. In Rwanda, the average R2 for estimating development indicators ranged from a high of
0.74 for an asset-based wealth index, to a low of 0.06 for predicting the average weight / height percentile for children.

survey, with the x-axis indicating the actual wealth of the cluster
(as measured in the DHS), and the y-axis indicating the wealth
predicted through the transfer learning algorithm. Visually, our
results are very similar to those in prior work. Quantitatively, in
Rwanda, our model can reconstruct village wealth with an R2 of
0.74 (vs. the R2 of 0.75 reported in [15]); in Nigeria, we achieve
similar performance of R2=0.74 (vs. R2=0.68 reported in [15]).

4.2 Wealth predictions outside Africa
Previously published results on using deep learning to predict
wealth have only focused on five countries in sub-Saharan Africa.
There, the predictive models achieved goodness of fit ranging from
0.55 to 0.75 (Malawi: 0.55; Tanzania: 0.57; Nigeria: 0.68; Uganda:
0.69; Rwanda: 0.75). [15] also present evidence that their model can
“travel well across borders,” i.e., that a model trained in one of those
five countries can be applied with reasonable success to estimat-
ing wealth in a different one of those five countries (figure 5 in
[15]). However, prior work does not address whether this approach
can be applied outside of the sub-Saharan African context, where
the relative homogeneity of the geographic environment might be
uniquely well-suited to this method.

Our first novel result is to test the ability of this same modeling
approach to generalize outside of sub-Saharan Africa. Here, we
focused on Haiti and Nepal, two geographically diverse contexts
small enough to facilitate rapid iteration of our model training and
tuning procedures.4 On these countries, we find that the model’s
ability to predict wealth was in one case slightly lower than previ-
ous results in sub-Saharan Africa (Haiti: R2=.51%) and in another
case comparable (Nepal: R2=0.64). This suggests that these tech-
niques are not uniquely appropriate to sub-Saharan Africa. At the
same time, there may be certain specific countries where these
methods perform quite poorly. Thus, in ongoing work we are ap-
plying this approach to a much larger set of countries across the
globe (initial results have not revealed any countries with markedly
lower performance).

4In a country as large as Nigeria, it takes several weeks to download and process the
raw satellite imagery, and several days of GPU computing to train the CNN.
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4.3 Generalizing to other measurements
Our second set of results test the ability of the original transfer
learning approach to generalize to the prediction of development in-
dicators other than the asset-based wealth index. Here, we find that
the model cannot predict any of the other development indicators
as accurately as it predicts wealth, and that for certain indicators
the performance is no better than a random guess. These results
are produced when applying the exact same formula (described in
Section 3) to a different development indicator; we discuss later
whether modifications to this formula might improve these results.

Figure 4 illustrates this point in Rwanda. Going from left to
right, we show the model’s ability to measure levels of education,
electrification, access to water, and child weight-for-height index.
In all cases the performance is lower than the performance for the
wealth index (R2=0.74, the second scatter-plot in Figure 3). For both
education and electrification the performance is still reasonable
(R2=0.47 andR2=0.69, respectively), but degrades significantly when
predicting the access to water (R2=0.26) and the average children
weight-for-height index (R2=0.06).

Outside of Rwanda, the results for non-wealth based measures of
development degrade more rapidly. This evidence is summarized in
Figure 5, which shows the performance of the model in predicting
eleven different measures of human development in each of the
four countries. In the figure, each box-and-whisker plot shows the
distribution of test R2 values from the outer loop of cross-validation.
The full set of results from Rwanda are shown in the top set of plots.
As described earlier, performance is best for wealth and electricity,
and worst for health-related indices. Figure 6 collapses these results
by indicator, making more explicit the range of average R2 values
for each indicator in each country.

Across all countries and development indicators, we observe a
range of R2 performance from -0.02 (equivalent to a random guess)
to 0.73 (highly accurate). Within this range, several patterns emerge.
First, in all countries, the model achieves the best performance in
predicting the asset-based wealth index. This was the headline re-
sult from prior work, and it appears to be quite robust. As we discuss
below, there are several factors that might cause this approach to
work best for wealth prediction.

Second, there appears to be a separate group of development
indicators—health and anthropometric indices—that are consis-
tently difficult to predict in each country. This group includes the
average child weight-to-height percentile, for which the maximum
R2 of any country is 0.11. This group also includes hemoglobin
level, and the average child height and weight percentiles. For each
of these indicators, the R2 is consistently lower than those reported
for the asset index in prior work. However, we note one surprising
outlier in this group: female body mass index can be predicted with
R2 between 0.31 and 0.47.

Third, we note a group of indicators where performance is mod-
est, and where additional refinement may hold promise. This in-
cludes predicting levels of education (R2 between 0.47 and 0.64),
access to electricity (R2 between 0.24 and 0.69), and mobile phone
ownership. This may be in part due to the fact that all three are
closely correlated with wealth (and in case of the latter two, may
even be mechanically factored in to the wealth index).

-0.2 0.0 0.2 0.4 0.6 0.8

wealth
electricity

mobile phone ownership
education

bed net count
female BMI

water access
child height %ile
child weight %ile
hemoglobin level

child weight / height %ile

Rwanda

-0.2 0.0 0.2 0.4 0.6 0.8

wealth
electricity

mobile phone ownership
education

bed net count
female BMI

water access
child height %ile
child weight %ile
hemoglobin level

child weight / height %ile

Nigeria

-0.2 0.0 0.2 0.4 0.6 0.8

wealth
electricity

mobile phone ownership
education

bed net count
female BMI

water access
child height %ile
child weight %ile
hemoglobin level

child weight / height %ile

Haiti

-0.2 0.0 0.2 0.4 0.6 0.8

R² for 5 folds

wealth
electricity

mobile phone ownership
education

bed net count
female BMI

water access
child height %ile
child weight %ile
hemoglobin level

child weight / height %ile

Nepal

Figure 5: Generalizing the approach to other indicators of
development in other countries. Boxes and whiskers mark the
range of R2 values from five-fold cross-validation. Indicators are
ordered from highest to lowest median R2 in Rwanda.



ICTD ’17, November 16–19, 2017, Lahore, Pakistan Andrew Head, Mélanie Manguin, Nhat Tran, and Joshua E. Blumenstock

Figure 6: Which development indicators are hardest to pre-
dict? Some indicators are difficult to predict from visual features
extracted from satellite images (average child weight / height per-
centile). Others can be predicted consistently well in every country
(wealth, education). For some indicators, prediction accuracy varies
greatly between countries (household bed net count). Colored dots
show the average R2 for predicting the development indicator from
satellite images in each country. Gray bars highlight the range from
minimum to maximum R2.

Fourth, we note that for several indicators (access to electricity,
bed net count, water access), the average R2 varies widely across
countries (see Figure 6). In the most extreme case, bed net count
is predicted with an R2 of only 0.05 in Haiti, and an R2 of 0.63
in Nepal. These high variance situations suggest there might be
regional variations in the landscapes and human structures that
correspond to the indicators. In some cases (as with water access)
there is also high variance within a country, between different test
folds in cross-validation. This may be indicative of a high level of
geographic heterogeneity within the country, leading to varying
performance when certain types of regions are randomly included
or excluded from the training set.

Finally, it appears there is no one country in which prediction is
uniformly better for all indicators. In general, however, and given
the limited sample of 11 indicators from 4 countries, performance is
better in the sub-Saharan countries than in Haiti and Nepal. This is
the case for the wealth index, mobile phone ownership, and female
BMIs. There are also two outlying indicators, hemoglobin level and
bed net count, for which the model predicts better in Nepal by more
than 0.20 relative to the next country.

4.4 Model tuning and optimization
For researchers and practitioners interested in using satellite-based
measurements of development as inputs into current and future
projects, an important lesson we have learned in fitting the above
models is that prediction accuracy can be sensitive to hyperparame-
ter choice in unexpected ways. In particular, we found that models
can be quite brittle, and that the fact that a model performs well
on a given metric in a given country does not mean that it will
necessarily work out of context.

In particular, in our initial set of experiments, we used a simpli-
fied training procedure that relied heavily on the default settings of

Figure 7: Sensitivity to hyperparameters.We varied the hyper-
parameters of initial learning rate (LR), kernel weight regularization
(λ), and ridge regression regularization (α ) to see how they impacted
prediction accuracy. For the tested configurations, the CNN was
robust to more aggressive learning rates (LR = 10−4) and unpe-
nalized kernel weights (λ = 0). However, using default regression
regularization settings caused major performance degradation.

the CNN and ridge regression algorithm. This model predicted the
wealth index in Rwanda nearly as well (R2 = 0.71) as the original
results published in Science (R2 = 0.75) [15], and as the optimized
results described above (R2 = 0.74). However, even for wealth, this
model performed quite poorly in other countries (R2 = 0.35 for
Nepal and R2 = 0.53 for Nigeria).

What could explain these differences? Key differences between
our initial and final model include training using a more aggressive
learning rate (10−4 vs. 10−6), a larger training set of images (10,000
images per class nighttime light intensity vs. 60,000 or all), and care-
fully tuning the ridge regression regularization parameter (vs. using
the default value of 1). To better understand these discrepancies, we
repeated tuning for Haiti using all combinations of these parameter
values, thus populating a 2x2x2 grid of possible hyperparameters.
This grid is shown for the wealth index and for the child weight /
height index in Figure 7.5

Prediction performance was resilient to the tested changes to
the CNN configuration: changing the starting learning rate from
10−6 to 10−4 affected average R2 by no more than 0.04, and this
difference only occurred when the ridge regression α was initialized
as its default value. Disabling kernel weight regularization had
no detectable impact on prediction accuracy. However, prediction
accuracy became much more volatile when the ridge regression
configuration changed. When the ridge regression regularization
parameter was set to its default value rather than a tuned value
found through cross-validation, the observed R2 dropped by at
least 0.13 for the asset-based wealth index, and by about 0.50 for
the measurements of the average child weight to height percentile.

It’s sensible to think one would already know to tune a regular-
ization parameter when providing input to a linear regression with

5For these trials, we used the same tuning process as we described in Section 3.2, with
the modification that training was stopped after the learning rate dropped below 10−8 .
This change was made to expedite the analysis. We find empirically that despite this
earlier stopping point, the models trained during these tests performed similarly to
the model described in Section 4.3.
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tens of thousands of factors. At the same time, it might not be obvi-
ous that a CNN would face substantial performance degradation in
a transfer learning task, especially when it achieved high validation
accuracy over dozens of epochs. While CNN tuning appears to be
resilient to a number of reasonable hyperparameter choices, we
caution those adapting this technique to be aware of the major
impact seemingly small adaptation choices can have on the overall
success of the transfer learning process.

5 DISCUSSION
Our results in this paper have shown that while satellite imagery
and machine learning may provide a powerful paradigm for es-
timating the wealth of small regions in sub-Saharan Africa, the
same approach does not trivially generalize to other geographical
contexts or to other measures of human development. In this as-
sessment, it is important to emphasize what we mean by “trivially,”
because in truth the point we are making is somewhat circumspect.
Specifically, what we have shown is that the exact framework—of
retraining a deep neural network on night-lights data, and then
using those features to predict the wealth of small regions in sub-
Saharan Africa—cannot be directly applied to predicting arbitrary
indicators in any country with uniformly good results.

We believe that this is an important point to make because absent
empirical evidence to the contrary, it is likely that policymakers
eager to gain quick access to micro-regional measurements of de-
velopment might be tempted to do exactly what we have done in
this paper, without paying careful attention to the thorny issues
of generalizability that we have uncovered in this analysis. It is
not our intent to impugn the potential for related approaches to
provide important new methods for measuring development, but
rather to say that such efforts should proceed with caution, and
with careful validation.

Our results showed that while some indicators like wealth and
education can be predicted reasonably well in many countries, oth-
ers development indicators are much more brittle, exhibiting high
variance between and within countries, and others perform poorly
everywhere. We thus find it useful to distinguish between two possi-
ble reasons why the current approach may have failed to generalize
to these measures of development. First, it may be that this exercise
is fundamentally not possible, and that no amount of additional
work would yield qualitatively different results. Second, it is quite
possible that our investigation to date has been not been sufficiently
thorough, and that more concerted efforts could significantly im-
prove the performance of these models. We discuss each possibility
in turn.

5.1 Fundamental limitations
There are several possible reasons why it might be fundamentally
impossible to use satellite imagery to accurately measure certain
aspects of human development. These include:

Insufficient “signal" in the satellite imagery. Our overarching goal
is to use information in satellite images to measure different aspects
of human development. The premise of such an approach is that the
original satellite imagery must contain useful information about
the development indicator of interest. Absent of such a signal, no

matter how sophisticated our computational model, the model is
destined to fail.

The fact that wealth specifically can be measured from satellite
imagery is quite intuitive. For instance, looking at the photos in
Figure 2, there are visual features one might expect correlate with
wealth—large buildings, metals roofs, nicely paved roads, and so
forth. It may be the case that other measures of human development
cannot be seen from above. For instance, it may be a fundamentally
difficult task to infer the prevalence of malnutrition from satellite
imagery, if the regions with high and low rates of malnutrition ap-
pear similar, even though we hypothesize that these indices should
correlate with wealth index [24]. We were, however, surprised by
the relative under-performance of models designed to predict ac-
cess to drinking water, as we expected the satellite-based features
to capture proximity to bodies of water, which in turn might affect
access to drinking water.

(Over-) reliance on night-lights may not generalize. Our reliance
on night lights might help explain why some indicators were pre-
dicted less successfully in some countries than others. An example
in our study includes Nepal, where the accuracy in predicting ac-
cess to electricity was much lower (R2 = 0.24) than in the other
countries (R2 = 0.69, 0.44, and 0.54 in Rwanda, Nigeria, and Haiti, re-
spectively). This may be partly due to the fact that Nepal has a very
low population density (half as dense as Haiti and Rwanda) and
very high levels of electrification (twice as high as Haiti, Rwanda,
and Nigeria) [2]. If the links between electrification, night-lights,
and daytime imagery are broken in Nepal, we would expect our
modeling approach to fail. More generally, we expect that when
a development indicator does not clearly relate to the presence of
nighttime lights, it may be unreasonable to expect good perfor-
mance from the transfer learning process as a whole.

Deep learning vs. supervised feature engineering. In this paper,
we have focused explicitly on using the deep/transfer learning ap-
proach to extracting information from satellite images. While pow-
erful, it is also possible that other approaches to feature engineer-
ing might be more successful than the brute force approach of the
convolutional neural network. For instance, Gros and Tiecke [13]
have recently shown how hand-labeled features from satellites, and
specifically information about the types of buildings that are present
in each image, can be quite effective in predicting population den-
sity. Labeling images in this manner is resource intensive, and we
did not have the opportunity to test such approaches. However,
we believe that careful encoding of the relevant information from
satellite imagery would likely bolster the performance of specific
prediction tasks.

5.2 Possible shortcomings
The issues discussed above represent a set of potential limitations
that are inherent to predicting human development with satellite
data and deep learning. In addition, it is possible—and perhaps
quite likely—that the overarching approach could work, given more
concerted and focused analysis. Here, we discuss a few salient
improvements to the experimental design, data collection, and deep
learning architecture that would represent useful next steps for
future work.
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Measurement error. One difficulty we encountered was the high
levels of measurement error in our “ground truth” data. In the case
of the DHS, for example, noise is intentionally added to the GPS
coordinates of each household, to preserve the privacy of individual
respondents. Since we rely on these coordinates to match surveys
to satellite images, this introduces classical measurement error in
our response variable.

This error is also likely different for each measure of develop-
ment that we tested. For instance, the wealth index is a composite
index, calculated as the first principal component of a large number
of questions related to household characteristics and asset owner-
ship. Such a composite index likely smooths out considerable noise
in the individual asset questions. By contrast, most of our other
development indicators are derived from a single survey question,
and may thus have a lower ratio of signal to noise.

Mis-specification. As we have shown, the effectiveness of this ap-
proach depends on careful tuning of the algorithms used to derive
development estimates from satellite imagery. It is even possible—
though we think unlikely—that a different set of tuning parameters
could be used to estimate anthropomorphic outcomes (the lowest-
performing indices) from the same input data. To more conclusively
investigate such possibilities, we think an important, albeit com-
putationally intensive, next step involves systematically exploring
the parameter and hyperparameter space of the machine learning
algorithms. In our case, we relied heavily on the TensorFlow im-
plementation of VGG16, as it provided considerable functionality.
But this functionality comes at the cost of flexibility, and careful
tuning might improve predictive performance. Examples of design
decisions to explore include: the type of CNN (we use VGG16),
supervised learning algorithm (ridge regression), cross-validation
procedure (inner/outer 5-fold), image resolution (zoom 16) and
augmentation (mirroring), image labels (nighttime lights) and dis-
cretization (3 bins), batch size (32), CNN parameters (learning rate,
regularization, momentum), and many others.

Countries of focus. A final issue worth highlighting is that our
assessment of the ability of the original model to generalize to
other contexts is based on an evaluation of Haiti and Nepal. These
countries were chosen because they are dissimilar to the original
sub-Saharan nations, but also because they are relatively small
nations where the required data and computational resources were
more manageable. However, our conclusions about geographic
generalizability should be qualified by the understanding that Haiti
and Nepal are by no means representative of all other developing
countries, and that additional testing is required before affirmative
claims about global generalizability can be made.6

6 CONCLUSION
This project presents a preliminary investigation of the generaliz-
ability of satellite-based methods for estimating human develop-
ment. After replicating prior work that established the potential
for such methods to predict asset-based wealth in Rwanda, we
show that the same approach cannot be trivially translated into
6Haiti, for instance, had the weakest performance for 8 out of 11 development indi-
cators. With its disproportionately urban population (60% of total, with 75% living
in slums [3]), it may be representative of countries that pose unique challenges for
learning meaningful visual signals of development.

Figure 8: Speeding up training by tuning block 5 only. We
achieved similar prediction performance tuning only the CNN’s top
layers and fifth block of convolutional layers, as when we replicated
the training process described in [15]. The distribution of R2 values
across folds were strikingly similar for the two models for each of
several development indicators in Rwanda and Haiti.

predicting other “softer” development outcomes (such as health
outcomes and access to clean drinking water) with the same accu-
racy in other countries (specifically, Haiti and Nepal). We provide
some discussion of how this failure to generalize could be caused
by fundamental constraints of the satellite-based approach, as well
as specific issues with implementation. We also outline several
compelling next steps for research in this space.

Broadly, we remain optimistic that future work using novel
sources of data and new computational algorithms can engender
significant advances in the measurement of human development.
However, it is imperative that such work proceeds carefully, with
appropriate benchmarking and external calibration. Promising new
tools for measurement have the potential to be implemented widely,
possibly by individuals who do not have extensive expertise in the
underlying algorithms. Applied blindly, these algorithms have the
potential to skew subsequent policy in unpredictable and undesir-
able ways. We view the results of this study as a cautionary example
of how a promising algorithm should not be expected to work “off
the shelf” in a context that is significantly different from the one in
which it was originally developed.
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