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Public mobility data enables 
COVID‑19 forecasting 
and management at local 
and global scales
Cornelia Ilin1,5, Sébastien Annan‑Phan2,3,5, Xiao Hui Tai1,5, Shikhar Mehra1, 
Solomon Hsiang2,4* & Joshua E. Blumenstock1*

Policymakers everywhere are working to determine the set of restrictions that will effectively 
contain the spread of COVID‑19 without excessively stifling economic activity. We show that publicly 
available data on human mobility—collected by Google, Facebook, and other providers—can be used 
to evaluate the effectiveness of non‑pharmaceutical interventions (NPIs) and forecast the spread of 
COVID‑19. This approach uses simple and transparent statistical models to estimate the effect of NPIs 
on mobility, and basic machine learning methods to generate 10‑day forecasts of COVID‑19 cases. 
An advantage of the approach is that it involves minimal assumptions about disease dynamics, and 
requires only publicly‑available data. We evaluate this approach using local and regional data from 
China, France, Italy, South Korea, and the United States, as well as national data from 80 countries 
around the world. We find that NPIs are associated with significant reductions in human mobility, and 
that changes in mobility can be used to forecast COVID‑19 infections.

Societies and decision-makers around the globe are deploying unprecedented non-pharmaceutical interventions 
(NPIs) to manage the COVID-19 pandemic. These NPIs have been shown to slow the spread of COVID-191–4, 
but they also create enormous economic and social costs (for  example5–10). Thus, different populations have 
adopted wildly different containment  strategies11, and local decision-makers face difficult decisions about when 
to impose or lift specific interventions in their community. In some contexts, these decision-makers have access 
to state-of-the-art models, which simulate potential scenarios based on detailed epidemiological models and 
rich sources of data (for  example12,13).

In contrast, many local and regional decision-makers do not have access to state-of-the-art epidemiological 
models, but must nonetheless manage the COVID-19 crisis with the resources available to them. With global 
public health capacity stretched thin by the pandemic, thousands of cities, counties, and provinces—as well as 
many countries—lack the data and expertise required to develop, calibrate, and deploy the sophisticated epide-
miological models that have guided decision-making in regions with greater modeling  capacity14–16. In addition, 
early evidence suggests a need to adapt models to a local context, particularly for developing countries, where 
disease, population and other characteristics are different from developed countries, where models are primarily 
being  developed17–19.

Here, we aim to address this “modeling-capacity gap” by developing, demonstrating, and testing a simple 
approach to forecasting the impact of NPIs on infections. This approach is built on two main insights. First, 
we show that passively collected data on human mobility, which has previously been used to measure NPI 
 compliance20–26, can also effectively forecast the COVID-19 infection response to NPIs up to 10 days in the future. 
Second, we show that basic concepts from econometrics and machine learning can be used to construct these 
10-day forecasts, effectively emulating the behavior of more sophisticated epidemiological models, including 
those which incorporate mobility  data27,28.

This approach is not a substitute for more refined epidemiological models. Rather, it represents a practical and 
low-cost alternative that may be easily adopted in many contexts when the former is unavailable. It is designed 
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to enable any individual with access to standard statistical software to produce forecasts of NPI impacts with a 
level of fidelity that is practical for decision-making in an ongoing crisis.

Data
Our study links information on non-pharmaceutical interventions (NPIs, shown in Fig. 1a) to patterns of human 
mobility (Fig. 1b) and COVID-19 cases (Figure 1c-d). All data were obtained from publicly available sources. 
We provide a brief summary of these data here; full details are provided in “Supplementary file 1: Appendix A”.

Non‑pharmaceutical interventions. We obtain NPI data from two sources. At the sub-national level, we 
use the NPI dataset compiled by Global Policy  Lab2,29. For each sub-national region in five countries, we observe 
the fraction of the population treated with NPIs in each location on each day. We aggregate 13 different policy 
actions into four general categories: Shelter in Place, Social Distance, School Closure, and Travel Ban. At the 
national level, we compiled data on national lockdown policies from the Organisation for Economic Co-opera-
tion and Development (OECD)—Country Policy  Tracker30, and crowed-sourced information on Wikipedia and 
COVID-19 Kaggle  competitions31.

Human mobility. We source publicly-available data on human mobility from Google, Facebook, Baidu and 
SafeGraph. These private companies provide free aggregated and anonymized information on the movement of 
users of their online platform (Fig. 1e). Data from Google indicates the percentage change in the amount of time 
people spend in different types of locations (e.g., residential, retail, and workplace)32. These changes are relative 
to a baseline defined as the median value, for the corresponding day of the week, during Jan 3–Feb 6, 2020. Face-
book provides estimates of the number of trips within and between square tiles (of resolution up to 360m2 ) in 
a  region33. We aggregate these data to show trips between and within sub-national units. Baidu provides similar 
data, indicating movement between and within major Chinese  cities34,35. Lastly, SafeGraph dataset gives us infor-
mation on average distance travelled from home by millions of devices across the  US36.
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Figure 1.  Data on mobility measures, COVID-19 infections and home isolation policy adoption. (a) Home 
isolation policy adoption, (b) Change in time spent at home, (c) Infection growth rate, and (d) Total confirmed 
cases are displayed at the county, state and country level. (e) Illustrative example of different mobility measures 
in California. We utilize data on trips both within and between counties (Facebook and Baidu) as well as the 
purpose of the trip (Google) and the average distance traveled (SafeGraph).
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COVID‑19 cases. For each sub-national and national unit, we obtain the cumulative confirmed cases of 
COVID-19 from the data repository compiled by the Johns Hopkins Center for Systems Science and Engineer-
ing (CSSE)37. The World Health Organization (WHO) provides similar data at the national level but at the 
moment of writing this paper, no such data are available at the sub-national  level38.

Linking data sets. The availability of epidemiological, policy, and mobility data varies across subnational 
units and countries included in the analysis. We distinguish between three different levels of aggregation for 
administrative regions - denoted “ADM2” (the smallest unit), “ADM1”, “ADM0.” Our global analysis is con-
ducted using ADM0 data. The country-specific analysis is determined by data availability. Results are provided at 
the prefecture (ADM2) and province level (ADM1) in China; the regional (ADM1) level in France; the province 
(ADM2) and region (ADM1) level in Italy; the province (ADM1) level in South Korea; and the county (ADM2) 
and state (ADM1) level in the United States.

We merge the sub-national NPI, mobility, and epidemiological data based on administrative unit and day to 
form a single longitudinal (panel) data set for each country. We merge the daily country-level observations to 
construct a longitudinal data sets for the portion of the world we observe.

Methods
We briefly summarize our methodology below. This discussion is meant to be accessible to a general audience, 
including policymakers who do not necessarily have advanced training in statistics. Full details, including model 
equations and estimation methods, are provided in “Supplementary file 1: Appendix B”.

Models. We decompose the impact of an NPI on infections ( �infections
�NPI  ) into two components that can be 

modeled separately: the change in behavior associated with the NPI, and the resulting change in infections asso-
ciated with that change in behavior:

We construct models to describe each of these two factors. The “behavior model” describes how mobility behavior 
changes in association with the deployment of NPIs ( �behavior

�NPI  ). The “infection model” describes how infections 

change in association with changes in mobility behavior ( �infections
�behavior  ). Both models are “reduced-form” models, 

commonly used in econometrics, that characterize the behavior of these variables without explicitly modeling 
the underlying mechanisms that link them (cf.2). Instead, these models emulate the output one would expect 
from more sophisticated and mechanistically explicit epidemiological models—without requiring the underlying 
processes to be specified. While this reduced-form approach does not provide the same epidemiological insight 
that more detailed models do, they demand less data and fewer assumptions. For example, they can be fit to local 
data by analysts with basic statistical training, not necessarily in epidemiology, and they do not require knowledge 
of fundamental epidemiological parameters—some of which may differ in each context and can be difficult to 
determine. The performance of these simple, low-cost models can then be evaluated via cross-validation, i.e., by 
systematically evaluating out-of-sample forecast quality.

Behavior model. For each country, we separately estimate how daily sub-national mobility behavior changes 
in association with the deployments of NPIs using a country-specific model. In the global model, we pool data 
across countries and estimate how mobility in each country changes in association with national exposure to 
NPIs. Each category of mobility on each day is assumed to be simultaneously influenced by the collection of 
NPIs that are active in that location on that day. A panel multiple linear regression model is used to estimate the 
relative association of each category of mobility with each NPI. Our approach accounts for constant differences 
in baseline mobility between and within each sub-national unit—such as differences due to regional commuting 
patterns, culture, or geography, and differences in mobility across days of the week. These effects are not mod-
eled explicitly but instead are accounted for non-parametrically. “Supplementary file 1: Appendix B.1” contains 
details of the modeling approach.

Infection model. As with the behavior model, we model the daily growth rate of infections at the local, national, 
and global scale. In each location, we model the daily growth rate of infections as a function of recent human 
mobility and historical infections. The approach does not require epidemiological parameters, such as the incu-
bation period or R0 , nor information on NPIs.

In practice, we estimate a distributed-lag model where the predictor variables are mobility rates in that 
location for the prior 21 days, and the dependent variable is the daily infection growth rate, constructed as the 
first-difference of log confirmed infections. This approach captures the intuition that human mobility is a key 
factor in determining rates of infection, but does not require parametric assumptions about the nature of that 
dependency. The model also accounts for constant differences in baseline infection growth rates within each 
locality—such as those due to differences in local behavior unrelated to mobility, differences across days of the 
week, and changes in how confirmed infections are defined or tested for. This approach is also robust to incom-
plete rates of COVID-19 testing, uneven patterns of testing across space, and gradual changes in testing over 
 time2—see “Supplementary file 1: Appendix B.2” for details.

We fit the model using historical data from each location, and follow stringent practices of cross-validation to 
ensure that the models are not ‘overfit’ to historical trends. The accuracy of the forecast is then evaluated against 
actual infections observed during the forecast period, but which were not used to fit the model. Models are fit at 

(1)
�infections

�NPI
=

�behavior

�NPI
×

�infections

�behavior
.
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the finest administrative level where data are available and forecasts are aggregated to larger regions to evaluate 
the ability of the model to predict infections at different spatial scales. “Supplementary file 1: Appendix B.2” 
contains details of the modeling approach.

In principle, such future forecasts can be used by decision-makers who are able to influence local mobility 
through policy and/or NPIs, perhaps informed either by a behavioral model or observation. Here, we test the 
quality of the infection model to generate forecasts by simulating and evaluating what a forecaster would have 
predicted had they generated a forecast at a historical date. In the forecasts presented here, we assume that 
mobility remains at the level observed during the forecast period—although in practice we expect that decision-
makers would simulate different forecasts under different mobility assumptions to inform NPI deployment and 
policy-making.

Results
We first present results from our behavior model, characterizing the mobility response of different populations 
to different NPIs. We then evaluate the infection model’s ability to forecast COVID-19 infections based on these 
same mobility measures. We conclude by discussing how these models could be used to guide policy decisions 
at local and regional scales.

Mobility response to NPIs. We estimate the reduction in human mobility associated with the deployment 
of NPIs by linking comprehensive data on policy interventions to mobility data from several different countries 
at multiple geographic scales. We find that the combined impact of all NPIs reduced mobility between admin-
istrative units (Facebook/Baidu) by 73% on average across the countries with sub-national policy data (Fig. 2a). 
The combined effects were of similar magnitude in China (− 78%, se = 8%), France (− 88%, se = 27%), Italy  
(− 85%, se = 12%), and the US (− 69%, se = 6%); no significant change was observed in South Korea, where 
mobility was not a direct target of NPIs (for  example39). Excluding South Korea, we estimate that all policies 
combined were associated with a decrease in mobility by 81% . The general consistency of these magnitudes 
across countries holds for alternative measures of mobility: using Google data we find that all NPIs combined 
result in an increase in time spent at home by 28% (se = 2.9), 24% (se = 1.3), and 26% (se = 1.3) in France, Italy, 
and the US, respectively. This was achieved, in part, by reducing time spent at workplaces by an average of 59.8% 
and time in commercial retail locations by an average of 78.8%.

We estimate the impact of each individual NPI on total trips (Facebook/Baidu) and quantity of time spent 
at home and other locations (Google) accounting for the estimated impact of all other NPIs. Travel bans are 
significantly associated with large mobility reductions in China (− 70%, se = 7%) and Italy (− 82%, se = 25%), 
where individuals stayed home for 10% more time, but not in the US (Fig. 2b). School closures were associated 
with moderate negative impacts on mobility in the US (− 26%, se = 10%) and increased time at home (4.6%, se 
= 0.7%) but slight positive impacts in Italy (33%, se = 7%) and France (15%, se = 7%). Other social distancing 
policies, such as religious closures, had no consistent impact on total trips but were associated with individuals 
spending more time at home in the US (11.5%, se = 1.6%) and more time in retail locations in Italy (17.6%, se 
= 4.8%). Similarly, the national emergency declaration was associated with significant mobility reductions in 
China (- 62.6 %, se = 12.7 %). Shelter-in-place orders were associated with large reductions in trips for the US 
(− 60.8%, se = 8%), Italy (− 38.4%, se = 35%), and France (− 91.2%, se = 13.6%), and large increases in the frac-
tion of time spent in homes (8.9%, 22.1%, 28%, respectively). Shelter in place orders did not appear to have large 
impacts in South Korea or China. This is consistent with earlier policies (such as the Emergency Declaration) 
restricting movement in China earlier than the shelter in place orders, while mobility in South Korea was never 
substantially affected by NPIs.

Globally, we find evidence that lockdown policies were associated with substantial reductions in mobility 
(Fig. 2c). Across 80 countries, the average time spend in non-residential locations decreased by 40% (se = 2%) in 
response to NPIs. Time spent in retail locations is the most impacted category, declining 49.9% (se = 2%). Some 
of the variation in response across countries (grey dots) likely reflects different social, cultural, and economic 
norms; measurement error; and statistical variability. In “Supplementary file 1: Appendix C”, we disaggregate 
this effect temporally, and find that the most significant reductions occur during the first eight days after a 
lockdown (Figure S1c).

In “Supplementary file 1: Appendix C”, we further exploit the granular resolution of the mobility data to 
investigate whether localized policies also impacted neighboring regions (Figure S1). In the USA and Italy, the 
impact of NPIs on mobility was highly localized, with little evidence of spatial spillover effects (“Supplementary 
file 1: Appendix C - Figure S1a”). In China, the evidence is more mixed, with some evidence of spillovers between 
neighboring cities (“Supplementary file 1: Appendix C - Fig S1b”).

Forecasting infections based on mobility. We find that mobility data alone are sufficient to meaning-
fully forecast COVID-19 infections 7–10 days ahead at all geographic scales – from counties and cities (ADM2), 
to states and provinces (ADM1), to countries (ADM0) and the entire world. Furthermore, identical models that 
exclude mobility data perform substantially worse, suggesting an important role for mobility data in forecasting.

Figure 3 illustrates the performance of model forecasts in several geographic regions and at multiple scales. 
The true infection rate is shown as a solid line; data used to train each model are depicted in blue dots, and the 
forecast of our model is shown in orange, contrasted against a model with no mobility data in green. Forecasts 
that account for current and lagged measures of mobility generally track actual cases more closely than forecasts 
that do not account for mobility. For example, a forecast made for the period 4/06/2020–4/15/2020 for California-
Los Angeles on 4/15/2020 without mobility projects 30,716 cases, while the same forecast accounting for mobility 
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would be 12,650 cases, much closer to the 10,496 that was observed. Figure 3b depicts projected cases for the 
entire world based on this reduced-form approach, estimated using country-level data mobility data from Google.
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Figure 2.  Empirical estimates of the effect of NPIs on mobility measures. Markers are country specific-
estimates, whiskers show the 95% confidence interval. (a) Estimated combined effect of all policies on number 
of trips between counties (left) and time spent in specific places (right). (b) Estimated effects of individual policy 
or policy groups on mobility measures, jointly estimated for each country. (c) Estimated effect of lockdown on 
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Figure 4 summarizes model performance across all administrative subdivisions of each of the three countries 
we consider for the forecast analysis (China, Italy, and the United States). We show the distribution of model 
errors over all ADM2 and ADM1 regions at forecast lengths ranging from 1 to 10 days. Table 1 summarizes each 
distribution using the median.

In all geographies and at all scales, models with mobility data perform better than models without. In general, 
sub-national forecasts in China benefit least from mobility data, but forecasts in Italy and the US are substan-
tially improved by including a single measure of mobility for the 21 days prior to the date of the forecast. At the 
local (ADM2) level in Italy, the MPE is −1.73% and 13.27% for five and ten days in the future when mobility is 
accounted for, compared to 45.81% and 167.97% when it is omitted. In the US, MPE is 7.00% (5-day) and 20.75% 
(10-day) accounting for mobility, and 23.79% and 79.47% omitting mobility. In China, MPE is 4.18% (5-day) and 
131.09% (10-day) accounting for mobility, and 16.83% and 128.80% omitting mobility. At the regional (ADM1) 
level, MPE rates are similar but extreme errors are reduced, largely because positive and negative errors cancel 
out. Country-level forecasts, which use country-level mobility data from Google, benefit relatively less than 
sub-national model from including mobility information, in part because baseline forecast errors are smaller. 
For countries in our sample, MPE is 6.35% (5-day) and 15.24% (10-day) accounting for mobility, and 11.46% 
and 31.12% omitting mobility.

Model application in decentralized management of infections. Our results suggest that a sim-
ple reduced-form approach to estimating model (1) may provide useful information and feedback to decision-
makers who might otherwise lack the resources to access more sophisticated scenario analysis. We imagine the 
approach can be utilized in two ways. First, a decision-maker considering an NPI (either deploying, continuing, 
or lifting) could develop an estimate for how that NPI might affect behavior, based on our analysis of different 
policies above (Fig. 2). Using these estimated changes in mobility, they could then forecast changes in infections 
using the infection model described above—but fit to local data.

Table 2 provides an example calculation for how a novel policy that increased residential time (observed in 
Google data) would alter future infections, using estimates from the global-level model. For example, a policy 

Figure 3.  Short term prediction of COVID-19 cases. Solid line is the recorded number of COVID-19 
infections, markers show data in our training sample (blue) and our predictions estimated using mobility 
measures (orange) versus a model without mobility (green). Model with no mobility measures consistently over-
predict the number of infections and drift away quickly from the observed data. (a) This pattern is confirmed 
when aggregating locally estimated predictions (left) at the state (middle) and country (right) level. (b) Similarly, 
predictions obtained from country level estimates are significantly more accurate when a measure of mobility is 
included.
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Figure 4.  Evaluation of forecast errors for the infection model. For Italy, US and China, forecasts are evaluated 
at the finest administrative level (ADM2), as well as aggregated to larger regions (ADM1). For each ADM2 
region and forecast length, the mean is taken over all available forecast dates, and the error is evaluated using 
that mean. Boxplots display the distribution of these percentage errors for each ADM2 region. These are then 
aggregated to ADM1 level (right panel), for both models including and excluding mobility variables. Similarly, 
for data fitted at a global level (bottom-most plot), for each country and forecast length, the mean is taken over 
all forecast dates.
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that increases residential time by 5% in a country is predicted to reduce cumulative infections ten days later, 
to 82.5% (CI: (78.2, 87.0)) of what they would otherwise have been. Similar tabulations can be generated by 
fitting infection models using recent and local data, which would flexibly capture local social, economic, and 
epidemiological conditions.

A second way that a decision-maker could use our approach would be to actually deploy a policy without 
ex ante knowledge of the effect it will have on mobility, instead simply observing mobility responses that occur 
after NPI deployment using these publicly available data sources. Based on these observed responses, they could 
forecast infections using our behavior model.

Discussion
The COVID-19 pandemic has led to an unprecedented degree of cooperation and transparency within the sci-
entific community, with important new insights rapidly disseminated freely around the  globe40. However, the 
capacity of different populations to leverage new scientific insights is not uniform. In many resource-constrained 
contexts, critical decisions are not supported by robust epidemiological modeling of scenarios. Here we have 
demonstrated that freely available mobility data can be used in simple models to generate practically useful fore-
casts. The goal is for these models to be accessible to a single individual with basic training in regression analysis 
using standard statistical software. The reduced-form model we develop generally performs well when fit to local 
data, except in China where it cannot account for some key factors that contributed to reductions in transmission.

A key insight from our work is that passively observed measures of aggregate mobility are useful predictors of 
growth in COVID-19 cases. However, this does not imply that population mobility itself is the only fundamental 
cause of transmission. The measures of mobility we observe capture a degree of “mixing” that is occurring within 
a population, as populations move about their local geographic context. This movement is likely correlated with 
other behaviors and factors that contribute to the spread of the virus, such as low rates of mask-wearing and/or 

Table 1.  Median percentage error for each model and day of forecast, as plotted in Fig. 4. The error is 
presented for each model and geographical region, and for 1 to 10 day forecasts.

Model Country Level

Median percentage error (MPE) for forecast length (days)

1 2 3 4 5 6 7 8 9 10

Mobility World ADM0 0.90 2.19 3.46 4.83 6.35 7.80 9.54 11.00 12.60 15.24

No Mobility World ADM0 1.50 3.84 6.32 8.70 11.46 14.42 16.91 19.75 25.28 31.12

Mobility China ADM1 −0.20 1.41 3.05 4.55 5.91 7.54 7.60 17.59 53.26 124.82

No Mobility China ADM1 1.47 5.39 8.84 14.10 18.45 23.45 26.80 45.86 64.95 112.03

Mobility China ADM2 −0.44 0.89 2.11 3.29 4.18 5.19 6.10 6.80 50.66 131.09

No Mobility China ADM2 1.37 5.17 8.59 12.48 16.83 22.33 28.14 35.70 65.09 128.80

Mobility Italy ADM1 0.89 2.70 5.60 5.68 8.29 6.65 9.31 6.83 14.39 34.19

No Mobility Italy ADM1 4.86 13.66 23.12 33.69 45.03 61.06 80.95 107.48 133.98 172.74

Mobility Italy ADM2 −0.87 −0.90 −0.81 −1.06 −1.73 −2.11 −2.08 −0.99 4.41 13.27

No Mobility Italy ADM2 4.96 14.20 23.75 35.26 45.81 61.66 73.96 95.47 128.89 167.97

Mobility US ADM1 1.13 2.62 3.97 5.45 6.68 8.52 11.19 14.28 17.24 21.82

No Mobility US ADM1 3.50 9.39 15.29 21.79 29.22 37.11 45.54 57.36 71.72 88.73

Mobility US ADM2 0.98 2.30 3.64 5.21 7.00 8.77 11.00 14.28 16.67 20.75

No Mobility US ADM2 2.80 7.72 12.62 17.79 23.79 30.34 37.37 48.43 63.31 79.47

Table 2.  Example: Estimating the effect of a mobility-reducing policy on infections for the global model (unit 
of observation is a country day). The values in the table are the ratio of the cumulative number of cases after 
up to 10 days, if residential time over baseline was increased in a country at day 0 by � = 1%, 5%, 10% or 20% 
from their original values. These values are estimated using coefficients of the mobility variables derived from 
the pooled global model (details in “Supplementary file 1: Appendix B.2”). Note that each column compares 
to the value on its first row (indicated by the value 1). An example interpretation is: if a country increases 
residential time by 5%, cumulative infections ten days later is predicted to be 82.5% of what they would have 
been with no change in mobility.

� Day = 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1

.01 1 0.998 0.996 0.993 0.989 0.985 0.98 0.975 0.969 0.962

.05 0.998 0.992 0.981 0.966 0.948 0.928 0.906 0.881 0.854 0.825

.10 0.996 0.983 0.962 0.934 0.899 0.862 0.821 0.776 0.729 0.68

.20 0.992 0.967 0.926 0.873 0.808 0.743 0.674 0.603 0.532 0.463



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13531  | https://doi.org/10.1038/s41598-021-92892-8

www.nature.com/scientificreports/

physical distancing. Our approach does not explicitly capture these other factors—and thus should not be used 
to draw causal inferences—but is possible that our infection model performs well in part because the easy-to-
observe mobility measures capture these other factors by proxy.

The simple model we present here is designed to provide useful information in contexts when more sophis-
ticated process-based models are unavailable, but it should not necessarily displace those models where they are 
available. In cases where complete process-based epidemiological models have been developed for a population 
and can be deployed for decision-making, the model we develop here could be considered complementary to 
those models. Future work might determine how information from combinations of qualitatively distinct models 
can be used to optimally guide decision-making.

We also note that the reduced-form model is designed to forecast infections in a certain population at a 
restricted point in time. It achieves this by capturing dynamics that are governed by many underlying processes 
that are unobserved by the modeler. However, because these underlying mechanisms are only captured implicitly, 
the model is not well-suited to environments where these underlying dynamics change dramatically. In such 
circumstances, process-based models will likely perform better. The reduced-form approach presented here can 
still be applied in such circumstances, but it may be necessary to refit the model based on data that is representa-
tive of current conditions. Similarly, when our reduced-form model is applied to a new population, it should be 
fit to local data to capture dynamics representative of the new population.

The approach we present here depends critically on the availability of aggregate mobility data, which is 
currently provided to the public by private firms that passively collect this information. At the time of writing, 
these mobility datasets are publicly available in 135 and 152 countries for Google and Facebook, respectively. 
In lower-resource settings, where use of smartphones is less common, the users who generate mobility data 
may not be as representative of the total population as in wealthy nations, but prior work suggests that biases 
in phone ownership may not dramatically bias estimates of overall population  mobility41. In such contexts, 
anonymized metadata from mobile phone operators is increasingly being made available for research and policy 
 interventions42,43, and offers a promising source of data for public health  applications44.

We hypothesize that the approach we develop here might skillfully forecast the spread of other diseases besides 
COVID-19. If true, this suggests our approach could provide useful information to decision-makers for manag-
ing other public health challenges, such as influenza or other outbreaks, potentially indicating a public health 
benefit from firms continuing to made mobility data available—even after the COVID-19 pandemic has subsided.

Data availability
Data used in this study can be divided into three categories - Epidemiological, Policy and Mobility. They are 
publicly available at different locations. We collected epidemiological data from the 2019 Novel Coronavirus 
COVID-19 (2019-nCoV) Data Repository compiled by the Johns Hopkins Center for Systems Science and 
Engineering (JHU CSSE)37. The policy data was constructed and made available for academic research by Global 
Policy  Lab2,29. Mobility data comes from three of the biggest internet companies - Google, Facebook and Baidu. 
Google mobility data summarizes time spent by their users each day after Feb 6, 2020 in various types of places, 
such as residential, workplaces and grocery  stores32. Facebook summarizes and anonymizes its user data into 
useful metrics that can be used to evaluate the movement of  people33. Baidu provides aggregated user location 
data and mobility metrics via its Smart Eye  Platform36. A dump of all datasets analysed during the study are also 
available from the corresponding author on reasonable request.
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