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Abstract
Over the past 15 years, global analysis of mRNA expres-
sion has emerged as a powerful strategy for biological
discovery. Using the power of parallel processing, ro-
botics, and computer-based informatics, a number of
high-throughput methods have been devised. These in-
clude DNA microarrays, serial analysis of gene expres-
sion, quantitative RT-PCR, differential-display RT-PCR,
and massively parallel signature sequencing. Each of
these methods has inherent advantages and disadvan-
tages, often related to expense, technical difficulty, spec-
ificity, and reliability. Further, the ability to generate
large data sets of gene expression has led to new chal-
lenges in bioinformatics. Nonetheless, this technological
revolution is transforming disease classification, gene
discovery, and our understanding of regulatory gene
networks.

Copyright © 2002 S. Karger AG, Basel

Introduction

Global analysis of gene expression has emerged as a
major advance in biomedical research. Traditional meth-
ods of studying gene regulation led investigators to focus
on one gene at a time in any particular biological context.
As a result, many important biological changes were ei-
ther missed or uncovered in a serendipitous manner.
Over the past 10 years, numerous methods were devel-
oped to allow investigators to examine mRNA expression
levels of thousands of genes in a single experiment. These
large-scale approaches are opening a new vista with regard
to gene discovery, disease subclassification, and ultimate-
ly characterization of coordinately regulated gene net-
works. Herein, we discuss utility, strategies, and caveats
of global analysis of mRNA expression. We will not dis-
cuss the methods used to isolate differentially expressed
genes such as subtraction hybridization, as these are not
typically used to quantify transcript levels.

Utility of Global Expression Analysis

Global analysis of RNA expression has three funda-
mental but related uses: disease subclassification, identifi-
cation of key genes, and elucidation of biological path-
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ways (table 1). With regard to disease subclassification, by
analyzing large-scale patterns of gene expression, investi-
gators can deduce similarities within and among patient
populations and thereby more accurately classify them.
Several studies showed the power of this subclassification
process, particularly in studies of cancer [1–4] and in
studies on the cellular response to chemotherapeutic sus-
ceptibility [5]. To identify key genes involved in a biologi-
cal process, one typically is seeking those genes that are
induced or repressed which are then prioritized for fur-
ther study. This typically involves going to the literature
to acquire knowledge about known genes and often define

potential new roles for known genes. In addition, investi-
gators often seek to perform a functional characterization
of novel, orphan genes. Biological pathway discovery is a
less appreciated use of gene expression analysis, but
remains the most tantalizing with regard to understand-
ing the complexities of large networks of interacting genes
and their encoded proteins. Work in yeast, particularly
from the Brown laboratory [6–9], pioneered the pathway
discovery modality by showing that time course studies
using many different conditions and stimuli can identify
coordinately regulated genes and their related upstream
regulatory gene promoter regions [10, 11].

Methods of Performing Global Expression
Analysis

There are a number of technologies available for ana-
lyzing mRNA expression levels or differential mRNA
expression (table 2). These methods include Northern
blots, RT-PCR, macroarrays, microarrays, differential-
display RT-PCR, serial analysis of gene expression
(SAGE), comparative expressed sequence tag (EST) analy-
sis, and massively parallel signature sequencing (MPSS). It
should be noted that all of these systems have advantages
and disadvantages (table 3). Furthermore, none is consid-
ered the ‘best’ at this time. In general, the sequence-based
methods such as SAGE, MPSS, and comparative EST
analysis, in which an automated sequencer is used to iden-
tify the transcript, provide the greatest specificity with
regard to gene identity. On the other hand, the alternative,
hybridization-based methods are typically less expensive
per gene analyzed and can process more samples.

Table 1. Utility of global gene expression

Disease subclassification
Identification of key genes
Elucidation of biological pathways

Table 2. Methods of gene expression an-
alysis

Comparative EST
Differential-display RT-PCR
Macroarrays
MPSS
Microarrays
Northern blot analysis
RT-PCR
SAGE

Table 3. Advantages and disadvantages of the methods described

Micro-
arrays

Macro-
arrays

MPSS Northern
blot

SAGE RT-PCR Differential-
display
RT-PCR

Comparative
EST

P P P P P P P P P P P P P P

Setup expense P P P P P P P P P P P P P P P P P

Cost of analysis P P P P P P P P P P P P P P P P P

Bioinformatics needs P P P P P P P P P P P P P P P P P P

Number of genes P P P P P P P P P P P P P P P P P P

Number of samples P P P P P P P P P P P P P

Flexibility P P P P P P P P P P P P P P P P P P P

Gene specificity P P P P P P P P P P P P P P P P P P P P

P = Low; P P = medium; P P P = high.



66 Exp Nephrol 2002;10:64–74 Fryer/Randall/Yoshida/Hsiao/
Blumenstock/Jensen/Dimofte/Jensen/
Gullans

Of note, sequence-based methods such as SAGE, com-
parative EST sequencing, and MPSS are the most accu-
rate with regard to transcript identification but, for aca-
demic scientists, these approaches are technically chal-
lenging and relatively labor-intensive and expensive when
analyzing many samples (e.g., in large number of patients
or in a time course study). In contrast, the hybridization-
based formats are relatively easy to use, but can have
ambiguities with regard to nonspecific signal detection as
well as difficulty in monitoring low copy number trans-
cripts.

The traditional Northern blot [12] analyzes a single
gene at a time and is considered by most investigators to
be the ‘gold standard’ in terms of quantifying mRNA
expression levels. The inherent limitation of a Northern
blot is that typically only one gene at a time is analyzed. In
addition, there are variations from blot to blot that under-
mine large-scale quantitative comparisons. Analyzing
more than 10–20 RNA samples requires multiple blots,
and the methods consume considerable amounts of RNA
and other reagents that makes large-scale analysis costly
and time-consuming.

In the 1980s and early 1990s, strategies for large-scale
analysis of gene expression emerged. Initially dot-blots
were developed as ‘reverse-Northern blots’, in which each
gene being analyzed was blotted onto a nylon filter mem-
brane and an RNA sample was labeled and hybridized to
the blot. Expression levels were quantified using radioac-
tivity and an appropriate scanner. These macroarrays
have proven very reliable for quantifying gene expression
levels and continue to be used. There are numerous com-
mercial sources providing macroarrays. In general, these
‘low-tech’ arrays are relatively inexpensive, work ex-
tremely well, and can be easily scaled to allow analysis of
thousands of genes. Furthermore, they have the great
advantage that any laboratory can create its own macroar-
rays using an in-house or a commercially available library
of genes (i.e., oligonucleotides or ESTs) to be spotted. The
major drawbacks of filter-based macroarrays are that (1)
they can be difficult to process in a high-throughput man-
ner due to membrane stretching and other anomalies;
(2) there can be problems quantitatively comparing multi-
ple blots because of inconsistencies in labeling, and (3) the
blots typically have a high background signal, making it
difficult to analyze low-abundance transcripts.

In the early 1990s, RT-PCR [13, 14] analysis of mRNA
expression became prominent for analysis of mRNA ex-
pression. This method’s ability to be used in a 96-well for-
mat, as well as its requirement for only small amounts of
RNA, led to its development as a high-throughput, large-

scale technology. However, early recognition that RT-
PCR was only semiquantitative undermined its use as a
simple tool. The use of competing templates to provide
calibration standards allowed quantitation to be imple-
mented but slowed its utilization as a large-scale platform
for many genes. In recent years, however, commercial
enterprises have developed real-time PCR instruments
that have led to truly quantitative RT-PCR. Today, with
appropriate instrumentation, an investigator can use a 96-
well format to measure mRNA levels in hundreds of sam-
ples each day. Nonetheless, this approach essentially
remains a serial analysis when analyzing many genes, as
an investigator must test one sample and one gene in each
reaction tube. Thus, it is relatively expensive, if one
wishes to analyze hundreds or thousands of different
transcripts in many samples. Thus, quantitative real-time
RT-PCR is typically considered a validation method,
suitable for confirming expression levels of small num-
bers of genes in many biological samples.

Differential-display RT-PCR and similar PCR-based
techniques were introduced in the early 1990s [15, 16] as
a way of identifying mRNA expression differences in two
or more samples. These techniques use short oligonucleo-
tide primers (e.g., 10mers) to amplify arbitrary subsets of
25–100 genes in an RNA sample. These amplified prod-
ucts are visualized using polyacrylamide gel electrophore-
sis, and differences in the amount of a PCR product are
seen from the intensity of individual bands in the gel.
Genes of interest are then cut out of the gel, isolated, and
sequenced. This approach has been largely used as a
screening tool for identifying differentially expressed
genes. However, with some technical modifications and
use of more sophisticated instruments and appropriate
informatics, investigators have shown that differential-
display RT-PCR methods can generate quantitative in-
formation regarding mRNA expression levels, and indi-
vidual gene identities can be determined [17]. The great
advantage of this approach is that it requires no a priori
knowledge that a gene exists or what its sequence is. This
make it very useful for studies of organisms for which
there is little genomics infrastructure. Moreover, because
this approach involves PCR amplification, it often gener-
ates new genes that do not exist in public databases. Final-
ly, it is very flexible. The major drawback is that it would
be difficult for academic laboratories to automate, and
there is always some uncertainty regarding the identity of
each gene being analyzed.

The advent of automated, high-throughput sequencing
technology led to the comparative EST sequence analysis.
Pioneered by Venter and colleagues [18, 19] in the early
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1990s, comparative EST analysis provided the first large-
scale analysis of gene expression. The strategy involves
creating cDNA libraries representing all expressed
mRNAs in a cell or tissue. Then, by sequencing thousands
of arbitrarily chosen cDNAs, a database is created that
identifies and counts all the genes that are expressed
which are termed ESTs. The method has the inherent
advantages that it does not require prior knowledge of the
existence of a transcript to measure its level of expression.
In addition, being a sequence-based method, this strategy
is highly reliable with regard to transcript identification.
Nonetheless, this method has fallen into relative disfavor
because of significant drawbacks. In particular, it is very
expensive to sequence enough ESTs to generate a full pro-
file of gene expression. This issue is compounded by the
fact that most transcripts are of relatively low abundance,
so an investigator must sequence tens or hundreds of
thousands of ESTs to generate a statistical sampling of a
pool of RNA to identify differentially expressed genes.
Nonetheless, EST sequencing will remain an important
tool for studies of organisms the genomes of which are not
yet sequenced, as other approaches (e.g., microarray,
SAGE) typically require a database and/or repository of
genes to be useful. Furthermore, this approach can uncov-
er novel transcripts, particularly splice variants that are
likely to be missed by other methods.

Developed in the laboratories of Vogelstein and Kinz-
ler [20, 21], SAGE is a very clever analytical method that
has been effectively used in studies of cancer [22, 23].
SAGE uses a series of biochemical reactions to create a
library of short DNA fragments (13 base pairs), each one
being derived from a single mRNA molecule in a biologi-
cal sample. This population of DNA fragments, known as
SAGE tags, is concatenated together to form longer DNA
molecules that are then sequenced, as done with compara-
tive EST sequencing. However, a single molecule contains
DNA fragments representing 130 different RNA mole-
cules, so a single sequencing reaction is sampling the
expression of 130 transcripts. A database of SAGE tags is
created, and specialty software distinguishes each SAGE
tag, bins and counts identical tags, and thus measures the
abundance and distribution of each transcript in the RNA
pool being studied. Among a population of an estimated
40,000 mammalian genes, a 13-nucleotide sequence is a
relatively unique identity for a gene (1 per 413 or F70
million). Thus, additional software is available to identify
the gene that corresponds to each SAGE tag.

Performing a comparison of two RNA samples typical-
ly involves analyzing 30,000–100,000 SAGE tags in each
sample to generate statistically valid comparisons. The

advantage of this strategy is that it provides a highly reli-
able identification of each gene at less cost than EST li-
brary sequencing. The major disadvantages of this ap-
proach are that it is technically challenging to make SAGE
tag libraries, that it is relatively slow to perform a study,
that it is costly to perform a single experiment, and, most
importantly, that its power can only be fully appreciated
when there is an EST or genome database available to
allow identification of each SAGE tag. Thus, its applica-
tion has been predominant in human and mouse studies.
Of note, a public database of SAGE tags is available at
http:/www.ncbi.nlm.nih.gov/SAGE/ with links to the
Cancer Genome Anatomy Project established by the Na-
tional Cancer Institute to generate the information and
technological tools needed to decipher the molecular anat-
omy of the cancer cell.

MPSS is a novel method that, like SAGE, captures the
power of sequencing for gene identification and combines
it with the clout of a parallel-processing system to provide
ultrahigh-throughput analysis [24, 25]. Briefly, MPSS in-
volves construction of a cDNA library which is captured
on millions of microbeads and assembled into a planner
array. Individual beads are then individually imaged dur-
ing a series of complex multistep sequencing reactions,
and the DNA sequence of hundreds of thousands of tran-
scripts is determined at once. By sequencing 16–20 bases,
unique identities are deduced for each molecule, and a
database of all transcripts is created. Thus, sequence anal-
ysis provides gene identification, and a simple count of
the number of copies of each sequence reveals transcript
abundance or expression level. This approach was shown
to be effective in yeast and human cells for measuring
gene expression levels. There are several major advan-
tages of this strategy. It provides sequence level gene iden-
tification, and it can identify transcripts not previously
known to exist. Furthermore, the miniature, parallel-pro-
cessing system allows interrogation of hundreds of thou-
sands of transcripts at once, providing unprecedented
sensitivity. MPSS, like SAGE, is most valuable when used
in conjunction with an existing genome or EST database.
However, at this time it is unclear how widespread this
relatively elaborate and complex analytical system will
become.

DNA microarrays, or ‘gene chips’, have become the
most popular platform among scientists for performing
global gene expression analysis. Microarrays provide a
relatively rapid, reliable, reproducible, and quantitative
approach for simultaneously monitoring expression levels
of thousands of genes [7, 26–29]. Basically, the approach
is to create a spotted array of thousands of different DNA
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molecules (i.e., oligonucleotides or cDNAs) correspond-
ing to thousands of different genes. Then, starting with an
RNA sample, a series of biochemical reactions generates a
fluorescently labeled cRNA or ss-cDNA probe – note that
the term ‘probe’ has been used differently within the com-
munity. This probe is then hybridized to the microarray
and scanned with a laser scanner. The expression levels
are measured by the fluorescence intensity of bound
probe to each spot. Multiple microarray platforms now
exist from a variety of commercial entities. In addition, as
pioneered at Stanford, many institutions have robotic
equipment enabling them to create their own custom
microarrays.

The predominant microarray platforms, to date, are
Affymetrix oligonucleotide microarrays and glass slide
cDNA or oligonucleotide microarrays [30–32]. Other in-
novative microarray technologies include ‘flow-through’
microarrays and fiberoptic bead arrays [33]. Though im-
portant differences exist among the platforms, they share
many of the same advantages and disadvantages. In par-
ticular, they allow simultaneous analysis of thousands of
genes in a single sample. In addition, the identity of each
gene is known a priori. It is possible to process many dif-
ferent RNA samples quickly and efficiently, making pos-
sible studies of large numbers of patient samples or
detailed time course studies. Finally, the data are quanti-
tative and can be compared among laboratories and
across different experiments. The disadvantages begin
with the fact that microarrays are generally considered to
be relatively expensive, though the prices have decreased
as much as ten-fold over the past 4 years. In addition,
there is always some level of uncertainty regarding bind-
ing specificity, so that the measured expression level of
one gene may be corrupted by ‘nonspecific’ binding of
another gene with similar sequence. A number of strate-
gies seek to reduce this problem, such as the ‘mismatch’
analysis provided by Affymetrix or using informatics to
design ‘gene-specific’ oligos for the chip. In addition, the
level of sensitivity of microarrays is less than that of
sequence-based methods, though improvements in signal
detection are emerging all the time [34–36]. Finally, the
technical reproducibility has been a major concern in the
microarray field and led to the perception that the method
can detect only twofold or greater changes.

Pitfalls of DNA Microarrays
Because microarrays are becoming a ubiquitous ap-

proach, it is worthwhile to consider in some detail the
problems that can arise in using them. These problems
range from technical issues associated with the chip, label-

ing, and scanning to bioinformatics issues such as image
analysis and gene identification. Because many institu-
tions are setting up their own robotic systems with more
variables to deal with, the following discussion is directed
primarily at custom-made glass slide microarrays, though
similar concerns can arise with any platform.

The first step is to fabricate a microarray using a glass
slide, a spotting robot, and DNA for spotting. The quality
of the microarray slide is essential. A high-quality slide is
composed of an evenly planed glass slide to reduce optical
noise. This slide is generally coated with a positively
charged material (e.g., polylysine) that binds to and im-
mobilizes the spotted material. Covalent attachment
chemistries are available, though there is dispute regard-
ing whether they are necessary. A poor surface integrity
can lead to washing away of immobilized material, ulti-
mately reducing sensitivity and signal of the spotted prod-
uct.

The source of DNA for spotting is a major consider-
ation, as one can use cDNAs and ESTs or synthesized
oligos. For cDNAs and ESTs, the major problem has been
correct tracking of the DNA in each well to be sure that it
is the correct gene [37]. The recent availability of oligonu-
cleotides from commercial vendors likely obviates this
problem, though they are more expensive and require
greater care with regard to designing gene-specific oligos.
Oligos range in length from 25mers (Affymetrix) to
70mers from various vendors. To date, there is no clear
consensus regarding the best material to spot on microar-
rays.

There are many good commercial arraying instru-
ments that all appear to work well. They differ with regard
to cost, throughput, spot density, and ease of use. The
buffer used to spot a microarray determines size and mor-
phology of the spots. A good spotting buffer will help pro-
duce identical spot size and solid round spots, without
wasting DNA by excessive prespotting to remove excess
material from the surface of the pin. A variety of buffers
are known to work. The DNA needs to be covalently
linked to the slide using either high-energy ultraviolet rays
or exposure to high temperatures (80°C). The concentra-
tion of the immobilized material should ideally be around
50 ÌM to provide superfluous binding sites for the labeled
probe. Indeed, limiting the immobilized target directly
decreases the sensitivity of the system.

Most microarray protocols use total RNA and not
poly(A) RNA which can be contaminated with oligo(dT)
in the isolation process. There are a variety of procedures
for fluorescently labeling RNA, including a simple reverse
transcription with fluorescently modified oligos or an in
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vitro transcription process [31], and recently a dendrimer
tagging procedure has been reported [34]. Labeling proce-
dures are fraught with potential problems making it diffi-
cult to evenly and reproducibly label all transcripts from a
given RNA sample. Among the problems that exist are
difficult protocols, weak signal, high background fluores-
cence, quenching, high cost, inconsistent labeling, and sig-
nal compression. At this point, it is fair to say that this is
not routine procedure for most academic researchers and
that the benefit of commercial labeling kits and dedicated
technicians is the optimal strategy.

The hybridization of the labeled probe to the immobil-
ized target is critically dependent upon efficient mixing.
Proper mixing can significantly reduce the hybridization
time and increase the reproducibility of data from chip to
chip. Many laboratories still hybridize under a coverslip
which we feel is unacceptable. Dehydration, air bubbles,
dust, and leaking of sample over the edge of the slide are
some of the problems inherent to the use of coverslips.
Indeed, due to lack of mixing, very long incubations are
required which dramatically increase the likelihood of the
aforementioned problems. Hybridization chambers or
automated hybridization systems are recommended,
though one needs to be cautious. Of note, bright signals
are not necessarily the optimal result, as they may repre-
sent nonspecific binding.

Most confocal laser scanners on the market today will
produce a high-quality digital image of the fluorescent sig-
nals from the chips. The major differences are the ability
to change laser power and photomultiplier tube settings as
well as the number of slides the scanner can hold and scan
at one time. In our system, increasing the laser power by
10% results in a twofold increase in signal intensity; how-
ever, this is not true for photomultiplier tube settings
which are very nonlinear in their behavior. In general,
scanners should be adjusted to maximize the dynamic
range and to reduce the problem of signal saturation.

The final step for transforming microarray scanned
images into a database of expression values is image pro-
cessing. This process requires specialty software custom-
ized to identify individual spots, to determine signal and
background, and to exclude artifactual signals. Many
approaches have been advocated [38], and, in general,
improvements in all aspects of the technology, particu-
larly reducing background signal and enhancing true sig-
nal, have facilitated routine image processing to generate
reliable data. Nonetheless, it should be noted that errant
data points will always haunt the field, and, when feasible,
an investigator should examine and confirm the primary
image data when anomalous biological findings arise.

From a pragmatic perspective, many technical problems
are recognized and obviated by using duplicate spotting
on different regions of a chip and performing replicate
experiments with different chips.

Bioinformatics

Bioinformatics utilizes statistics and computer algo-
rithms to effectively classify, or cluster, genes or biological
samples (e.g., patients) into distinct groups based on gene
expression by comparing sets of gene expression data
throughout the course of disease or following the applica-
tion of one or numerous pharmacological agents. These
gene expression profiles may be obtained from biopsy
specimens of normal or diseased tissue or through the
monitoring of the effect of drugs or other biological stimu-
li on gene expression profiles in animals or isolated cell
systems. In the case of biopsy specimens, these profiles
may then be utilized to form a prognosis and diagnosis
and, therefore, provide a means for rational drug thera-
py.

Proper interpretation of the large data sets generated
by any method for global analysis of gene expression
requires tools for effective mining of the data. Re-
searchers must often correct for the high levels of noise
inherent in microarray experiments. In other words, it is
important to measure instrument error in every experi-
ment. This requires performing multiple replicates to
measure a gene-by-gene reproducibility in the data. In
addition, biological noise can be measured by analyzing
multiple RNA samples representing ‘identical’ biological
conditions. Hughes et al. [39], using 63 ‘identical’ yeast
cultures, showed a number of genes to be fluctuating in
expression level, many by severalfold, under conditions
researchers would traditionally consider to be un-
changed. Thus, biological noise can be significant and
needs to be considered. Unfortunately, obtaining a pre-
cise measurement of biological noise can be very expen-
sive. Thus, we prefer to simply perform replicates of indi-
vidual samples and apply stringent criteria for identi-
fying gene changes.

Analysis of replicates using microarrays (and reverse
labeling for two-color microarrays) has shown us that
there can be significant variation in technical error among
platforms, among investigators, among lots of reagents
and chips, etc. Thus, it is inappropriate to apply a uniform
filter, such as two- or fourfold changes. Rather it is impor-
tant to measure instrument error. In the case of Affymet-
rix GeneChips, the ability to resolve differences in expres-
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sion level is a function of expression level, termed ‘aver-
age difference’; abundant transcripts have small errors
(!2-fold), and low-abundance transcripts have large er-
rors (18-fold). Once instrument error is measured, data
can be corrected or filtered and interpreted correctly. One
consequence of this approach is that in most microarray
studies, most data are discarded prior to in-depth data
mining; in some cases 190% of the data are not reliable.
At the end, only reproducible data are meaningful for fur-
ther analysis.

Statistical Analysis of Differential Gene Expression
A scatter plot of the gene expression levels of one con-

trol sample measured on one microarray versus a repli-
cate of the same sample on a second microarray can pro-
vide a simple (and often sobering) assessment of the
instrumental noise in the data. In particular, a superposi-
tion of the scatter plot of control versus control (using log-
log scales) over the usual experiment versus control scat-
ter plot provides a simple ‘eyeball’ test for the genes with
significant changes in expression. Briefly, the experimen-
tal data points that lie well outside the ‘noise cloud’
defined by the same versus the same scatter plot are most
likely to be significantly changed between the control and
the experimental conditions. Even though hundreds or
thousands of genes may exhibit twofold or greater changes
on the microarrays, we often find that only a few tens of
genes meet this ‘eyeball’ criterion. Although expensive,
additional replicates of the microarrays for both the con-
trol samples and the experimental samples are essential
for more rigorous statistical tests such as t tests or Anova
to determine significant changes in gene expression on a
gene-by-gene basis.

Patterns of Gene Expression
DNA and oligonucleotide microarray technology has

made possible the analysis of expression of thousands of
genes simultaneously, and various statistical techniques
have been developed to interpret these data efficiently
and effectively. Typically, the goal is to identify potential
target genes for further analysis or to cluster samples
according to global similarity. These techniques can be
classified as either supervised or unsupervised, although
the majority of experiments will make use of both. Super-
vised methods require the direction of a scientist with a
priori knowledge of the data, such as disease class, gene
function, transcriptional regulation, or tissue type. An
unsupervised technique, on the other hand, lets the gene
expression patterns direct the analysis, regardless of
preexisting expectations [40]. Our experience has shown

that data should initially be analyzed using an unsuper-
vised approach, as this can reveal unappreciated, system-
atic data anomalies or identify more subclasses than an-
ticipated, such as three subclasses of cancer when only
two are thought to exist.

Hierarchical clustering is a type of exploratory data
analysis aimed at classifying and grouping data into
meaningful subsets. In bioinformatics, hierarchical clus-
tering algorithms are generally used to assess the similari-
ties among tissue samples or other biological samples.
Various hierarchical algorithms exist [41], and most pro-
vide a numerical indicator of cluster quality as well as an
intuitive tree plot of the similarity between samples as
represented by the length of the branch connecting them.
Hsiao et al. [42] recently utilized hierarchical clustering
algorithms to effectively cluster 19 nondiseased human
tissue types utilizing 451 housekeeping genes, differential-
ly expressed in all 19 tissues. Other studies have shown
the utility of hierarchical clustering for identifying disease
subtypes [2, 4]. Since many parameters can be varied in
the standard hierarchical clustering methods, such as the
choice of metric (e.g., Euclidean, Manhattan, or some spe-
cial weighted measure of distance), it is important to
explore both multiple clustering algorithms and settings
to develop hypotheses about the groupings of samples or
genes. In particular, groupings that are robust to changes
in methods and settings are most likely to be real rather
than artifacts of a particular clustering algorithm.

Self-organizing maps (SOM) are a type of unsuper-
vised algorithm well suited for the clustering of genes into
functionally meaningful groups. Tamayo et al. [43] re-
cently applied a SOM system, implemented using their
publicly available Genecluster software, to interpret gene
expression patterns, with application to hematopoietic
differentiation. Through the iterated adjustment of repre-
sentative clusters, the SOM groups genes that behave sim-
ilarly. SOMs are capable of handling large data sets, and
the implementation by Tamayo et al. [43] provides easy
visualization and interpretation of the system.

To effectively demonstrate the utility of SOMs, a my-
eloid leukemia cell line, HL-60, was analyzed upon stimu-
lation with a phorbol ester to initiate macrophage differ-
entiation. The temporal changes in gene expression were
monitored using Affymetrix oligonucleotide arrays con-
taining over 5,000 human genes and over 1,000 ESTs.
Upon configuration of the SOM algorithm, they identi-
fied numerous genes previously thought to be important
during differentiation as well as linking other, previously
unrecognized genes to this phenomenon. These same
methods were later successfully applied to a more com-
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plex analysis of four different cell lines, including HL-60,
U937, Jurkat, and NB4 cells, and could easily be applied
to nephrology to predict novel genes important in normal
renal function and in pathophysiologies. Additionally,
others [44] have used SOM in combination with other
mapping algorithms to more clearly visualize relation-
ships between individual gene sets. Indeed, these methods
of clustering reliably predicted functional similarities
among genes.

Bioinformatics Pitfalls
Although considerable progress has been made in ana-

lyzing global gene expression, many questions remain. In
addition to those methods described above, many analyti-
cal approaches are being tested. Many of these are avail-
able in standard statistical software (e.g., S-Plus, SyStat,
SAS) and appear to be very useful (such as principal-com-
ponent analysis). Today, however, no universally ac-
cepted protocol exists regarding how to conduct a bioin-
formatic analysis. As a result, everyone has a personal
favorite arsenal of statistical tools. Commonly used meth-
ods, such as SOM and hierarchical clustering, carry inher-
ent assumptions and biases. In addition, various strate-
gies of normalization exist. As a result, two researchers
using the same data could reach different conclusions
because of differing approaches and selection of parame-
ters. Undoubtedly, as larger and more robust data sets
arise, the community will begin to settle on standard
approaches that should be implemented and also pursue
more advanced strategies that can utilize the perceived
power of large public databases. Thus, the best approach
is to use several tools and to view the results as hypotheses
that need to be validated.

Towards the Development of Standards
A major goal of the gene expression research communi-

ty is to build large-scale public databases using data from
all expression-profiling platforms [45]. These data reposi-
tories could then be used to generate or substantiate new
hypotheses, using information compiled from multiple
biological systems. A major obstacle to this endeavor is
developing standards that allow cross-comparisons and
cross-validation. Considerable effort is being devoted to
developing standards (e.g., MIAME, MAML) for annotat-
ing expression experiments and facilitating data sharing
(see www.mged.org). In addition, however, biological
standards and reference data sets are likely to be required.
No standard RNA samples have been uniformly adopted,
though suitable commercial products are emerging. To
facilitate cross-validation of data sets and methods, we

recently conceived and implemented the idea of a set of
genes that should be available on all platforms, termed the
Standard Gene Set (SGS).

The SGS currently consists of a set of 96 ubiquitously
expressed housekeeping genes. To assist the research com-
munity, we identified the genes corresponding to the
human SGS in many commercial microarrays, oligonu-
cleotide sets, and cDNA sets, including those available
from Affymetrix, Operon, Research Genetics, Compug-
en, Motorola, and Perkin-Elmer. These genes were ob-
tained as part of our Human Gene Expression (HuGE)
Index Project which evaluated expression profiles of 19
normal human tissues [42]. It should be noted that these
96 housekeeping genes are ubiquitously expressed, how-
ever, at different levels in different tissues and can vary
following experimental stimulation. The SGS will allow
comparison of DNA microarray data between chips in the
same laboratory as well as cross-laboratory comparison of
gene expression analysis. The SGS is designed to assist in
the standardization of microarray type studies. To date,
the SGS can be used as a quality control measure in
human DNA microarray expression analysis and will like-
ly be adapted to include mouse, rat, and other species.
These genes will ensure a higher level of data quality, and
the development of a larger SGS (e.g., 384 genes) could
further enhance the quality.

The genes included in the SGS, as well as accession
numbers and links to associated gene databases, can be
found as a database at the HuGE Index (http://www.hu-
geindex.org). The ultimate objective of the HuGE Index is
to characterize the mRNA expression levels in all human
tissues. The publicly available mRNA expression levels of
thousands of genes are obtained using high-density oligo-
nucleotide array technology and aim at providing a com-
prehensive database to understand the expression of hu-
man genes in normal human tissues [42]. Expression pro-
file data can be downloaded and include many major
organ systems such as brain, kidney, liver, lung, muscle,
duodenum, colon, prostate, and spleen.

Fingerprinting Human Diseases
Biological stimuli, disease pathologies, and pharmaco-

logical manipulations induce a distinct biological pheno-
type or ‘molecular fingerprint’ that can be characterized
using RNA expression analysis. This fingerprint is effec-
tively created by the gene expression profile of the cell or
tissue and is distinct for that biological state or condition.
It needs to be appreciated that advanced informatics tools
often yield fingerprints or diagnostics that are a nonintui-
tive transformation of the expression levels of many genes
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rather than a simple list of genes that are increased and/or
decreased in a disease sample.

When creating a diagnostic fingerprint, an investigator
must use a subset of microarray data as a training set to
establish an algorithm or analytical test and then use this
test to analyze new samples, de novo. This approach was
used to distinguish different human acute leukemias. Go-
lub et al. [1] accurately distinguished acute myeloid leuke-
mia (AML) from acute lymphoblastic leukemia (ALL)
without previous identification or knowledge of the clini-
cal diagnosis. Using bone marrow samples from 38 pa-
tients, these authors first identified 1,100 genes that were
highly correlated with an AML-ALL diagnosis based on
gene expression data generated from high-density oligo-
nucleotide microarrays. Additionally, they were able to
identify a subset of 50 of the 1,100 genes that enabled dis-
tinction between AML or ALL. This 50-gene set was then
applied to 34 independent samples where they were able
to assign 29 samples to either AML or ALL with accuracy.
In fact, using only 10 of the 50 genes gave the same results.
Notably, 10 of the 34 samples were collected from periph-
eral blood rather than bone marrow, suggesting the power
of this methodology to differentiate between disease types
using dissimilar tissues. To further extend the effective-
ness of the molecular diagnosis of ALL, Golub et al. [1]
also applied gene expression analysis algorithms to pre-
dict whether ALL cases derived from either A or B
lineage. Therefore, gene expression analysis can be used
clinically to assist in the diagnosis of specific pathologies
and may be extended from leukemias to other pathologies
and organ systems. In fact, current technology is sufficient
to develop effective diagnostic tests for most diseases
using global expression profiling. It should be realized
that the clinical application may not involve a microarray
analysis, as simpler and cheaper methods are likely to be
sufficient.

Global Gene Expression and Nephrology
Increasing amounts of data linking gene expression

with kidney biology are being generated, including studies
of development, human pathology, and animal models of
disease [46 ,47]. A particularly intriguing and clinically
relevant study performed by Moch et al. [29] showed the
value of using a combination of DNA microarrays for
gene discovery and tissue arrays for validation of patho-
logically important genes. Microarray analysis of the renal
cell carcinoma (RCC) cell line CRL-1933 versus nondis-
eased renal samples was used to identify 89 differentially
expressed genes in the cancer cell line. Then using a renal
tissue array containing 532 tumors, these authors con-

firmed the importance of one of these transcripts, vimen-
tin, in RCC. A 37-month follow-up survival analysis con-
firmed that histological assessment of the vimentin ex-
pression on the tumor array in clear-cell RCC was posi-
tively associated with shorter survival time versus those
without vimentin-positive tissues. These data suggest that
microarrays can be used clinically to predict effective
prognostic biomarkers for disease, including RCC.

DNA microarrays can generate important information
concerning the genes and gene groups important during
the progression of renal diseases as well as play an impor-
tant role in the establishment of specific gene function in
the kidney. Monti et al. [48] recently utilized microarray
profiling to assess the genes responsible for physiological
blood pressure compensation in bradykinin B2 knockout
mice, providing clues as to the molecular mechanism
responsible for this phenomenon. Since the B2 receptor is
an important component of cardiovascular homeostasis
such as the regulation of vasodilation and natriuresis-
diuresis, compensatory gene expression changes were
monitored in 12,000 mouse genes and ESTs. These au-
thors identified 20 candidate genes that were upregulated
in the transgenic mice and 59 genes that were downregu-
lated in B2-receptor-deficient mice. Grouping these genes
into functionally related classes identified two gene fami-
lies likely to impact cardiovascular function: serine pro-
teases and aquaporins. The serine protease genes were
upregulated and are known to be essential for the conver-
sion of high-molecular-weight kininogen to bradykinin.
The aquaporin gene family is important in the transport
of water across the membrane of the proximal tubule of
the kidney. Monti et al. [48] found that only specific sub-
types of the aquaporin gene family, AQP4 and AQP1,
were downregulated in B2-deficient mice. Therefore, they
utilized microarrays in the elucidation of the molecular
mechanism of blood pressure compensation in mice lack-
ing functional B2 receptors and several differentially ex-
pressed genes in the kidney that are likely to be of func-
tional importance.

Expression profiling can identify key genes in animal
models of renal pathologies. Recently, Nagasawa et al.
[28] applied microarray analysis to monitor gene expres-
sion changes in a mouse model of massive proteinuria due
to intraperitoneal bovine serum albumin injections, re-
sulting in intrinsic renal toxicity, fibrosis, and deteriora-
tion of the renal function. Utilizing a hierarchical cluster-
ing algorithm, these authors demonstrated temporal gene
changes associated with proteinuria when analyzed on
days 0, 7, and 21 after protein overload. Nagasawa et al.
[28] identified numerous genes upregulated on days 7 and
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21 versus day 0, including osteopontin which has been
implicated in various renal diseases. Numerous genes
were also found to be downregulated. They concluded
that over 10% of gene transcripts in the kidney are altered
under conditions of excessive protein loading. Of note,
they used a variety of approaches to validate their obser-
vations. The use of animal models, such as used by Naga-
sawa et al. [28], in the development of these profiles may
be important, since many genes are retained in alternative
species such as mouse, rat, and nonhuman primates and
likely are translated into proteins with similar in vivo
function as their human counterpart. This work demon-
strates that these techniques are useful tools in the analy-
sis of gene expression in the era of functional genomics.

Conclusions

Global gene expression is a very powerful strategy for
uncovering new and important biology in nephrology.
Numerous methods are available, but investigators must
be cautious in using them, as many technical problems
and experimental biases can influence the results. As the
field matures, these strategies will lead to new diagnostic
tests, to delineation of key genes involved in renal physiol-
ogy and pathology, and potentially to an understanding of
the complex gene regulation network that underlies kid-
ney function. Furthermore, these discoveries will certain-
ly guide future human disease treatment.
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