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1 Introduction

Each year, hundreds of billions of dollars are spent on targeted social protection programs.

The importance of these programs increased dramatically in the past 18 months: In 2020,

global extreme poverty increased for the first time in two decades, and most countries ex-

panded their social protection programs, with more than 1.1 billion new recipients receiving

government-led social assistance payments (Gentilini et al., 2020).

Determining who should be eligible for program benefits — targeting — is a central

challenge in the design of these programs (Hanna & Olken, 2018; Lindert et al., 2020).

In high-income countries, targeting frequently relies on tax records or other administrative

data on income. In low- and middle-income countries (LMICs), where a large fraction of

the workforce is informal, programs often require primary data collection. The difficulty

and cost of collecting data, and the variable quality of what gets collected, can introduce

significant errors in the targeting process (Deaton, 2016; Jerven, 2013; Grosh et al., in press).

These issues are exacerbated in fragile and conflict-affected countries, where two thirds of

the world’s poor are expected to reside by 2030 (Corral et al., 2020).

This paper evaluates the extent to which non-traditional administrative data, processed

with machine learning, can be used for program targeting. Specifically, we match call detail

records (CDR) from a large mobile phone operator in Afghanistan to household survey data

from the Afghan government’s Targeting the Ultra-Poor (TUP) anti-poverty program. Eli-

gibility for the TUP program was determined through a hybrid targeting method, combining

a community wealth ranking (CWR) and a short follow-up survey. We then assess the ac-

curacy of three counterfactual targeting approaches at identifying the actual beneficiaries of

the TUP program: (i) our CDR-based method, which applies machine learning to data from

the mobile phone company; (ii) an asset-based wealth index, which uses asset ownership to

approximate poverty; and (iii) consumption, a common benchmark for measuring poverty in

LMICs.

Our analysis produces three main results. First, by comparing errors of inclusion and

exclusion using the program’s hybrid method as a benchmark, we find that the CDR-based

method is nearly as accurate as the asset and consumption-based methods for identifying

the phone-owning ultra-poor households. Second, we find that methods combining CDR

data with measures of assets and consumption are more accurate than methods using any

single data source. Third, we find that when non-phone-owning households are included in

the analysis, the CDR-based method remains accurate if non-phone-owning households are

classified as ultra-poor; however, targeting performance is quite poor if households without
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phones are ineligible for benefits. After presenting these main results, we compile data from

several existing targeting programs to give an indication of the substantial reduction in

marginal costs associated with CDR-based targeting.

These results connect two distinct strands of prior work. The first is a literature on pro-

gram targeting, which studies the effectiveness of different mechanisms for identifying pro-

gram beneficiaries. In LMICs, research has focused on the performance of proxy means tests

(PMTs) (Grosh & Baker, 1995; Filmer & Pritchett, 2001; Brown et al., 2018), community-

based targeting strategies (CBTs) (Alatas et al., 2012; Fortin et al., 2018), and related

approaches (Banerjee et al., 2007; Karlan & Thuysbaert, 2019; Premand & Schnitzer, 2020).

A meta-analysis by Coady et al. (2004), which includes 8 PMTs and 14 community-based

programs, finds little difference in targeting accuracy between the two methods — but notes

that targeting is regressive in a quarter of programs reviewed. In addition to issues with tar-

geting accuracy, the current methods available for poverty targeting in LMICs are time- and

resource-intensive, and may be infeasible in fragile or conflict-affected areas or in contexts

where social interaction is limited, such as during a pandemic.

The second body of work explores the extent to which non-traditional sources of data, in

conjunction with machine learning, might help address data gaps in LMICs (e.g. Blumen-

stock, 2016; Burke et al., 2021). Much of this work focuses on estimating the geographic

distribution of poverty at fine spatial granularity, using data from satellites (Jean et al.,

2016; Engstrom et al., 2017), mobile phones (Blumenstock et al., 2015; Hernandez et al.,

2017), social media (Fatehkia et al., 2020; Sheehan et al., 2019), or some combination of

these data sources (Steele et al., 2017; Pokhriyal & Jacques, 2017; Chi et al., 2020). Most

relevant to our current analysis, two prior papers investigate whether the mobile phone use

can approximate the wealth of individual mobile subscribers. Blumenstock et al. (2015)

show that CDR data are predictive of an individual-level asset-based wealth index among a

nationally representative sample of 856 Rwandan mobile phone owners (r = 0.68). Blumen-

stock (2018b) finds similar results with a sample of 1,234 male heads of households in the

Kabul and Parwan districts of Afghanistan.

Our paper connects these two literatures by rigorously assessing the extent to which

phone-based estimates of poverty can help with program targeting (Blumenstock, 2020). We

believe the analysis will be especially relevant to the increasing number of interventions that

rely on mobile money to distribute cash payments (Gentilini et al., 2020), and the growing

number of contexts where mobile phone data are being made available for humanitarian

purposes (Milusheva et al., 2021). For example, in just the past few years, mobile money
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was used to make cash transfer payments in countries including Bangladesh (Ali & May,

2021), Ghana (Karlan et al., 2021), Liberia (USAID, 2021), and Malawi (Paul et al., 2021).

Mobile phone data has been used to guide cash transfers in Colombia (Gentilini et al.,

2020), the Democratic Republic of the Congo (Gentilini et al., 2021), Pakistan (Gentilini et

al., 2020), and Togo (Aiken et al., 2021).1

The context of our empirical analysis – identifying ultra-poor households in Afghanistan

– is a particularly challenging environment for data collection and program targeting, as

62% of the households classified as not ultra-poor still fall below the national poverty line.

In such environments, when traditional options for targeting are not feasible, these methods

may provide a viable alternative for identifying households with the greatest need. Given the

policy relevance of these results, we conclude our analysis by discussing important ethical

and logistical considerations that may influence how CDR methods are used to support

targeting efforts in practice.

2 Data and Methods

Our main analysis evaluates the extent to which machine learning and mobile phone data

can differentiate between ultra-poor and non-ultra-poor households in rural Afghanistan.

This section describes the study population, the key datasets, and methods used to perform

the evaluation.

2.1 Household Survey Data

Our ground-truth were collected as part of the Targeting the Ultra-Poor (TUP) program

implemented by the government of Afghanistan with support from the World Bank. The

TUP program was a “big push,” providing multi-faceted benefits to 7,500 ultra-poor house-

holds in six provinces of Afghanistan between 2015 and 2018 (Bedoya et al., 2019). Our

analysis uses data from the baseline and targeting surveys for an impact evaluation of the

TUP program conducted in 80 of the poorest villages of Balkh province between November

2015 and April 2016 (N=2,582)2 These data include interviews with nearly all of the 1,173

ultra-poor households in surveyed villages, and a random sample of 1,679 non-ultra-poor

1The anti-poverty program implemented in Togo and described by Aiken et al. (2021) was based on the
methods developed and evaluated in this paper. Due to the time-sensitive nature of the COVID-19 response
described in Aiken et al. (2021), the two academic articles are in circulation concurrently.

2Our analysis restricts to 2,814 households for whom consumption and asset data are non-missing.
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households.3

Ultra-Poor Designation Eligibility for the TUP program was determined based on based

on geographic criteria,4 followed by a two-step process including a community wealth ranking

(CWR) and a follow-up in-person survey. CWRs were conducted separately in each village,

coordinated by a local NGO and village leaders, in collaboration with the government team.

CWRs divided households into four categories: well-off (6%), better-off (18%), poor (33%),

and extreme-poor (43%). The CWR was followed by an in-person survey to determine

whether nominated households met a set of qualifying criteria, coordinated by the NGO and

government representatives, and based on a measure of multiple deprivation.

For a household to be designated as ultra-poor, and therefore eligible for program benefits,

it had to be considered extreme-poor in the CWR, and also meet at least three of six criteria:5

1. Financially dependent on women’s domestic work or begging

2. Owns less than 800 square meters of land or living in a cave

3. Primary woman under 50 years old

4. No adult men income earners

5. School-age children working for pay

6. No productive assets

Ultimately, 11% of the households classified as extreme-poor in the community wealth

ranking step — 6% of the total population in the study villages — were classified as ultra-

poor and eligible for TUP benefits. Of the 2,852 households surveyed for the TUP project,

1,173 (41%) were designated as ultra-poor, and 1,679 (59%) were non-ultra-poor.

Consumption The consumption module of the TUP survey contains information on food

consumption for the week prior to the interview and non-food expenditures for the year prior

to the interview. These are used to construct monthly per capita consumption values, as

3The response rate for ultra-poor households was 96%. Approximately 20 households in each of the study
villages were randomly drawn (excluding TUP-eligible households), to provide a representative benchmark
for the TUP sample.

4The poorest villages were identified by the availability of veterinary services, financial institutions, and
social services, and being relatively accessible.

5While these were the official criteria used to guide selection, they were not always strictly enforced —
see Bedoya et al. (2019).
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detailed in Bedoya et al. (2019). Based on these data, we construct as an outcome measure

the logarithm of per capita monthly consumption, consistent with the approach used by the

Afghanistan government to determine the national poverty line.

Asset Index We construct an asset-based wealth index to assess the relative socioeconomic

status of surveyed households, calculated as the first principal component of variation in

household asset ownership for sixteen items detailed in Table S1. The principle component

analysis (PCA) is calculated over the dataset of 2,814 households not missing any asset data,

after standardizing each asset variable to zero mean and unit variance. This wealth index

explains 25.3% of the variation in asset ownership. Figure S1 shows the distribution of the

underlying asset index components and Table S1 shows the direction of the first principal

component.

Other Variables The TUP surveys collected several other covariates that we use in sub-

sequent analysis. These include a food security index (composed of variables relating to the

skipping and downsizing of meals, separately for adults and children), a financial inclusion

index (composed of access to banking and credit, knowledge of banking and credit, and sav-

ings), and a psychological well-being index for the primary woman (standardized weighted

scores on the Center for Epidemiological Studies Depression scale, the World Values Survey

happiness and satisfaction questions, and Cohen’s Stress Scale). The construction of each

index is documented in Bedoya et al. (2019). Crucially, the survey also collected data from

each household on mobile phone ownership. Nearly all (99%) households with a cell phone

provided their phone numbers and consented to the use of their call detail records for this

study.

Sample Representativity Portions of our analysis are restricted to the 535 households

from the TUP survey with phone numbers that match to our CDR (see Section 2.2). Ta-

ble 1 compares characteristics of households included and excluded from the 535-household

subsample; Figure S2 compares the distributions of these characteristics. There are some

systematic differences: the 535-household sample we analyze is richer on average than house-

holds surveyed in the TUP study, which is consistent with households in the subsample being

required to own at least one phone. For instance, while 88% of non-ultra-poor households

in the TUP survey own at least one phone, only 72% of ultra-poor households own at least

one phone.
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Summary Statistics As shown in Table 1 and Figure S3, the three measures of well-being

in our dataset are only weakly correlated with one another: for example, the correlation

between the asset index and consumption measure is 0.37 in the full survey and 0.34 in the

matched subsample. It is particularly important to note the characteristics of the ultra-poor:

while the ultra-poor population makes up 27% of the overall sub-sample, less than half of

the ultra-poor fall into the bottom 27% of the sample by wealth index or consumption.

Sample Weights Since the TUP survey oversampled the ultra-poor (by a factor of roughly

12), portions of our analysis use sample weights to adjust for population representativity.

When sample weights are applied, it is explicitly noted; if not mentioned, no weights are

applied. The sample weights are derived from the population of the village, and the house-

hold’s ultra-poor designation.6 After sample weights are applied, the ultra-poor make up

5.98% of the overall population, and 4.63% of our matched subsample.

2.2 Mobile Phone Metadata

In a follow-up survey conducted in 2018, we requested informed consent from survey re-

spondents to obtain their mobile phone CDR and match them to the survey data collected

through the TUP project. CDR contain detailed information on:

• Calls: Phone numbers for the caller and receiver, time and duration of the call, and

cell tower through which the call was placed

• Text messages: Phone numbers for the caller and recipient, time of the message

• Recharges: Time and amount of the recharge

For participants who consented, we match baseline survey data (collected November 2015

- April 2016) to CDR covering that same period, obtained from one of Afghanistan’s main

mobile phone operators. For households with multiple phones and a designated household

head (N=65), we match to CDR for the phone belonging to the household head. For house-

holds where the household head does not have a phone and someone else does (N=17), we

match to CDR for one of the households’ phones selected at random. In total, for the 535

households in our sample, 629,543 transactions took place in the months of November 2015

to April 2016, broken down into 310,883 calls, 305,756 text messages, and 12,904 recharges.

6A census listing was conducted in each village to facilitate the CWR exercise. In some cases, large
villages were split into smaller units and weights are based on the sub-village.
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From these CDR, we compute a set of 797 behavioral indicators that capture aggregate

aspects of each individual’s mobile phone use (de Montjoye et al., 2016). This set includes

indicators relating to an individual’s communications (for example, average call duration

and percent initiated conversations), their network of contacts (for example, the entropy

of their contacts and the balance of interactions per contact), their spatial patterns based

on cell tower locations (for example, the number of unique antennas visited and the radius

of gyration), and their recharge patterns (including the average amount recharged and the

time between recharges). Each indicator is computed separately for weekdays, weekends,

daytime, and nighttime activity. The distributions of a sample of these indicators are shown

in Figure S4.

2.3 Machine Learning Predictions

CDR-based Method Extending the approach described in Blumenstock et al. (2015),

we test the extent to which ultra-poor status can be accurately predicted from CDR. This

analysis uses the 535 TUP households who match to CDR to train a supervised machine

learning algorithm to predict ultra-poverty status from the mobile phone features. The

intuition — also highlighted in Figure S4 — is that ultra-poor individuals use their phones

very differently than non-ultra-poor individuals, and machine learning algorithms can use

those differences to predict ultra-poor status.

Our main analysis uses a gradient boosting model, which generally out-performs several

other common machine learning algorithms for this task (see Table S3). The feature impor-

tances for the trained model are shown in Table S2. Probabilistic predictions are generated

via 10-fold cross-validation, with folds stratified to preserve class balance. We tune hyper-

parameters using five-fold cross-validation for each fold separately. Additional details on the

machine learning methods are provided in Appendix A.

Combined Methods We also evaluate several approaches that use data from multiple

sources to predict ultra-poor status. Our main combined method trains a logistic regres-

sion to classify the ultra-poor and non-ultra-poor households using the predicted ultra-poor

probability from the CDR-based method (i.e., the output of the gradient boosting algorithm

described above), as well as asset and consumption data collected in the TUP survey. For

comparison, we similarly evaluate the performance of methods that combine only two of the

available data sources (i.e., assets plus consumption, assets plus CDR, and consumption plus

CDR). Predictions for each of the combined methods are pooled over 10-fold cross-validation.
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2.4 Targeting Accuracy Evaluation

Evaluation on Matched Subsample Our main analysis focuses on the 535 households

for which we observe both CDR and survey data, and evaluates whether machine learning

methods leveraging CDR data can accurately identify households designated as ultra-poor

by the TUP program (using the two-step hybrid approach described in Section 2.1). We

compare the performance of the CDR-based method to the performance of methods based

on the wealth index, consumption data, and combinations of these data sources.7 Each tar-

geting method is evaluated based on classification accuracy, errors of exclusion (ultra-poor

households misclassified as non-ultra-poor) and errors of inclusion (non-ultra-poor house-

holds misclassified as ultra-poor). We focus on the ultra-poor designation as the ‘ground

truth’ status of the household, against which other methods are evaluated, since it is the

most carefully vetted measure of well-being for this population, and the proxy that the

government used to target TUP benefits.

To evaluate the performance of the CDR-based and combined methods, we pool out-

of-sample predictions across the ten cross-validation folds, so that every household in our

dataset is associated with a CDR-based predicted probability of ultra-poor status that is

produced out-of-sample. To account for class imbalance, we evaluate model accuracy using

a “quota method”, by selecting a cut-off threshold for ultra-poor qualification such that each

method identifies the proportion of ultra-poor households in our subsample; this cut-off also

balances inclusion and exclusion errors. In our 535-household matched dataset this threshold

is 27%; in other samples (see following subsection), the percentage is different. We evaluate

each method for precision (positive predictive value) and recall (sensitivity). To capture

the trade-off between inclusion and exclusion errors for varying values of this threshold, we

also construct receiver operating characteristic (ROC) curves for each method and consider

the area under the curve (AUC) as a measure of targeting quality. For each evaluation

metric (precision, recall, and AUC), we bootstrap 1,000 samples from the original dataset

to calculate the standard deviation of the mean of the accuracy metric. Each bootstrapped

sample is of the same size as the original dataset, drawn with replacement.

7The CDR-based method uses supervised learning to model the ultra-poverty outcome, whereas the
asset- and consumption-based approaches do not. To assess the importance of this difference, we experiment
with applying machine learning methods to the asset and consumption data to model the ultra-poverty
outcome. In results shown in Table S4, we find that a machine-learned asset predictor provides only marginal
improvements on the standard asset-based wealth index and consumption measures.
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Accounting for Households Without Phones Our main results assess the performance

of different targeting methods on the sample of 535 households for whom we have both survey

data and mobile phone data. We also present results that show how performance is affected

when the analysis includes TUP households for whom we do not have mobile phone data

(typically because they do not have a phone or because they use a different phone network

than the one who provided CDR). We provide analysis that targets such households (1)

before households with CDR, or (2) after households with CDR (see Section 3.4). These

results are evaluated on three different samples:

1. Matched Sample: The 535 households for whom could match survey responses to CDR.

2. Balanced Sample: This sample includes the 535 matched households as well as the 472

households in the TUP survey who report not owning any phone. It excludes house-

holds that own a phone on a different phone network than the one who provided CDR.

The motivation for this sample is to provide an indication of targeting performance in

a regime in which CDR can be used to target all phone-owning households. In addition

to applying sample weights from the survey, households that do not own a phone are

downweighted so that the balance of phone owners to non-phone-owners (with sample

weights applied) is the same as in the baseline survey as a whole (with sample weights

applied, 84% phone owners).

3. Full Sample: All 2,814 households in the TUP baseline survey for which asset and

consumption data are available, with sample weights applied.

Note that the quota used to evaluate targeting changes for each sample, based on the

number of households that are ultra-poor in the sample. For the matched sample, the

targeting quota is 27.29%; for the balanced sample and full sample the quotas are 5.47% and

6.02%, respectively.

3 Results

3.1 Performance of Targeting Methods

Our first set of results evaluate the extent to which different targeting methods can correctly

identify ultra-poor households. This analysis compares the performance of CDR-based tar-

geting methods to asset-based and consumption-based targeting, using the sample of 535

households for which survey data and CDR data are both available.
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An overview of these results is provided in Figure 1. Figure 1a shows the distribution of

assets and consumption, as well as the distribution of predicted probabilities of being non-

ultra-poor generated by the CDR-based and combined methods, separately for the ultra-poor

and non-ultra-poor. The dashed vertical line indicates the threshold at which point 27% of

households are classified as ultra-poor; we use this quota because 27% of households in this

sample were designed as ultra-poor by TUP. Figure 1b provides confusion matrices that

compare the true status (rows) against the classification made by each method (columns).

These confusion matrices are also used to calculate the measures of precision and recall

reported in Table 2 Panel A.

We find that the CDR-based method (precision and recall of 42%) is close in accuracy to

methods relying on assets (precision and recall of 49%) or consumption (precision and recall

of 45%). To evaluate the trade-off between inclusion errors and exclusion errors resulting

from selecting alternative cut-off thresholds, Figure 1c shows the ROC curve associated with

each classification method, and the associated Area Under the Curve (AUC). AUC scores

are comparable among methods, with assets (AUC=0.73) slightly superior to consumption

(AUC=0.71) and the CDR-based method (AUC=0.68).

3.2 Comparison of Errors Across Methods

To better understand where the targeting methods are making mistakes, Panel A of Table

3 indicates how the ultra-poor misclassified as non-ultra-poor (false negatives) compare to

the correctly classified ultra-poor (true positives). Panel B shows how the non-ultra-poor

misclassified as ultra-poor (false positives) compare to the correctly classified non-ultra-poor

(true negatives).

Across methods, false negatives score higher on food security, financial inclusion, and

psychological well-being than true positives – that is, all three targeting methods misclassify

ultra-poor households as non-ultra-poor when those ultra-poor households are better-off, ac-

cording to other observable characteristics not used in the targeting. Likewise, false positives

(non-ultra-poor misclassified as ultra-poor) tend to score lower than true negatives across

these same measures. The CDR-based method in particular tends to prioritize households

that score low on these alternative measures of well-being.

To test for systematic misclassification of certain types of households, Table 4 displays

the overlap in errors of exclusion and inclusion between methods. Our results suggest that

the three classifiers misidentify the same households at a rate only slightly above random.8

8The rates of overlap should be interpreted relative to the expected overlap in errors for random classifiers.
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3.3 Combining Targeting Methods

Since the different targeting methods identify different populations as ultra-poor, there may

be complementarities between asset, consumption, and CDR data. As shown in Panel A

of Table 2, we find that a combined method, which takes as input the wealth index, total

consumption, and the output of the CDR-based method, performs better (AUC = 0.78)

than methods using any one data source (AUC = 0.68 - 0.73). As shown in Table S5), the

full method also outperforms methods based on any two data sources (AUC = 0.75 - 0.76).

The method that combines CDR and asset data (AUC = 0.76); may, however, be more

practical than the combined method, since consumption data is difficult to collect for large

populations.

3.4 Targeting Households Without Phones

An important limitation of CDR-based targeting is that households without phones do not

generate CDR. Here, we show how targeting performance is impacted when households

without phones are included in the analysis. This analysis uses two additional samples of

TUP households to evaluate targeting performance: (i) the balanced sample, which adds all

of the 472 households without phones to the sample of 535 for whom we have matched CDR;

the balanced sample is intended to illustrate the performance of CDR-based targeting if

CDR were available from all operators in Afghanistan — though it relies on the assumption

that phone-owners observed on our mobile network are representative of all phone owners

in Afghanistan (an assumption that is not fully satisfied, as shown in Table 1); and (ii) the

full sample, which includes all 2,814 households surveyed in the TUP baseline; this sample

includes an additional 1,807 households who report owning a phone, but whose number does

not match to any number in the CDR provided to us by the single mobile operator.9

Results in Panels B and C of Table 2 show the performance of each targeting approach

on the balanced and full sample, respectively. Note that as described in Section 2.4, different

targeting quotas are applied for each panel based on the proportion of each sample that is

ultra-poor. In the CDR-based and combined approaches, we report performance when the

households without CDR are targeted first (i.e. households without CDR are targeted in a

Based on our selection of thresholds such that 27% of the sample is identified as ultra-poor, our three
classifiers misidentify 15-27% of the non-ultra-poor and 51-65% of the ultra-poor. If these classifiers were
random, we would expect approximately 20% overlap in inclusion errors and 55% overlap in exclusion errors.

9These 1,807 households include households that report owning a phone on a different network (this
network is estimated to have around 30% market share in Afghanistan), as well as phones on our network
that were not active during the six-month period of CDR that we analyze.
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random order and then the households predicted to be poorest are targeted until the quota

is reached) as well as when households without CDR are targeted last (i.e., after the 535

households with phones are targeted, households without phones are included in a random

order until the quota is reached).

Unsurprisingly, these results suggest that CDR-based targeting is not effective when a

large portion of the target population does not own a phone (e.g. Panel C of Table 2, where

only 16% of the sample has matching CDR). However, when we simulate more realistic

levels of phone ownership in Panel B (84% of the households, based on our survey data),

CDR-based targeting is once again comparable to asset- or expenditure-based targeting,

particularly when households without phones are targeted first (AUC = 0.72, 0.70, 0.68 for

assets, consumption, and CDR, respectively). On the other hand, if households without

phones are targeted last (for example, if program administrators base targeting wholly on

CDR and provide no benefits to any household without a phone), the CDR-based method

only improves marginally on random targeting.

3.5 Additional tests and simulations

Our main analysis considers the household head to be the unit of analysis. As described in

Section 2.2, this analysis is based on matching survey-based indices to phone data from the

household head, which is consistent with the design of the TUP program and the TUP survey

sample frame. An alternative approach matches survey data reported by the household head

to all phone numbers associated with the household. As shown in Table S6, the predictive

accuracy of these models is slightly attenuated relative to the benchmark results (Table S3).

We also explore the extent to which CDR can be used to predict other measures of socioe-

conomic status. Our main analysis focuses on the household’s ultra-poor designation as the

ground truth measure of poverty, since this label was both carefully curated and the actual

criterion used to determine TUP eligibility. In Table S7, we report the accuracy with which

CDR (obtained from the household head, who is typically male) can predict consumption

and asset-based wealth (elicited from the primary woman of each household).10 In general,

these machine learning models trained to directly predict consumption or asset-based wealth

do not perform well. This result contrasts with prior work documenting the predictive ability

of CDR for measuring asset-based wealth (e.g. Blumenstock et al., 2015). We suspect a key

difference in our setting – aside from the fact that we are matching CDR to socioeconomic

10Due to the design of the TUP survey, which interviewed women in the household, we cannot avoid this
mismatch between the survey respondent and the phone owner.
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status at the household rather than the individual level – is the homogeneity of the bene-

ficiary population: whereas Blumenstock et al. (2015) uses machine learning to predict the

wealth of a nationally-representative sample of Rwandan phone owners, our sample consists

of 535 individuals from the poorest villages of a single province in Afghanistan, where even

the relatively wealthy households are quite poor.

4 Discussion

Our key finding is that, in a sample of 535 phone-owning households in poor villages in

Afghanistan, machine learning methods leveraging phone data are nearly as accurate at

identifying ultra-poor households as standard asset- and consumption-based methods. Fur-

ther, we find that methods combining survey data with CDR perform better than methods

using a single data source. However, as we demonstrate empirically, low rates of phone own-

ership — or the inability to access data from all operators — can undermine the value of

CDR-based targeting. In our setting, the CDR-based approach still works well if households

without phones are targeted before the CDR-based algorithm selects the poorest households

with phones. However, this approach may not be appropriate in other contexts where phone

ownership is less predictive of wealth, or where potential beneficiaries have the ability to

strategically under-report phone ownership (Björkegren et al., 2020).

As mobile phone penetration rates continue to rise in LMICs (GSMA, 2020), and as pro-

grams increasingly rely on mobile phones and money to distribute benefits (see footnote ??),

CDR-based targeting methods will likely play a more prominent role in the set of options

considered by policymakers and program administrators — particularly in contexts like Af-

ghanistan, where traditional targeting benchmarks are missing or of low quality. In just the

past few years, for instance, data from mobile phone operators was used in the design of so-

cial assistance programs in Colombia, the Democratic Republic of the Congo, Pakistan, and

Togo (see footnote ??). We conclude by highlighting a few policy important considerations

for CDR-based targeting.

Speed and cost An advantage of CDR-based targeting is that it can be used in contexts

where face-to-face contact is not feasible, dramatically reducing the time required to imple-

ment a targeted program. While it typically takes many months (or years) to implement

a proxy-means test (PMT), community-based targeting (CBT), or consumption-based tar-

geting, a CDR-based model can be trained in just a few weeks (see Appendix C). Likewise,
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the marginal costs per household screened are substantially lower with CDR-based targeting

than with CBT, PMT, or consumption-based targeting. For instance, Table S8 uses cost

estimates obtained from the literature (and detailed in Table S9) to estimate targeting costs

for the TUP program.11 Whereas the marginal costs of screening an individual with a CBT

or PMT are estimated at $2.20 and $4.00, respectively, the marginal cost of screening with

CDR is negligible (see Appendix C).12 For the entire TUP program, which screened around

125,721 households in six provinces, CBT and PMT would add an additional estimated

$276,586 and $502,884, respectively, corresponding to 2.18% and 3.97% of the total program

budget.

Data access and privacy Access to phone data is necessary for CDR-based targeting.

As we show, targeting performance degrades considerably when CDR are not available for

subsets of the population. Encouragingly, the past several years have been characterized by a

trend towards public sector access to CDR, particularly in the context of the COVID-19 pan-

demic, during which mobile network operators shared CDR with governments, researchers,

and NGOs for social protection purposes (cf. Gentilini et al., 2020, 2021; Aiken et al., 2021).

CDR have also been shared with the public sector for public health and humanitarian aid

applications (Milusheva et al., 2021). Access issues aside, CDR contain private and sen-

sitive data, including phone numbers and location traces. While much has been written

about enabling responsible use of CDR for humanitarian response (e.g. de Montjoye et al.,

2018; Oliver et al., 2020), to date no consistent privacy standards exist. Informed consent

can increase participant agency, but also complicates the implementation logistics. Likewise,

there may be ways to incorporate differential privacy or other privacy enhancing technologies

into a CDR-based targeting system, but such privatization would likely decrease targeting

accuracy (Hu et al., 2015).

Algorithmic transparency and strategic behavior Using CDR to determine program

eligibility may introduce incentives for people to manipulate their phone use. This consid-

eration is not unique to CDR, as degrees of manipulation have been documented in social

11In our cost calculations we obtain estimates for a CBT, rather than the hybrid approach used in the
TUP program, as there is more information available on CBT-only costs in the literature. However, as the
CBT cost can be interpreted as a lower bound for the cost of a hybrid approach, our qualitative results also
apply to a hybrid approach.

12Marginal costs of CDR-based targeting are negligible because we assume no contact with screened
individuals is required. In practice, it may be desirable to solicit informed consent to access CDR. If consent
were collected in-person, the marginal costs would approach that of a PMT; if collected over the phone,
there would still be significant cost savings, see Appendix Section C).
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programs that use proxy means tests and other traditional targeting mechanisms (Camacho

& Conover, 2011; Banerjee et al., 2018). Indeed, complex and non-linear machine learning

algorithms, like the one presented in this paper, may obfuscate the logic behind targeting de-

cisions, reducing the scope for manipulation. However, society often demands transparency

in algorithmic decision-making, as black-box decisions are difficult to audit or hold to ac-

count. There is therefore a tension between the goals of increasing transparency and reducing

manipulation, though recent advances in machine learning explore mechanisms for pursuing

both objectives at once (Björkegren et al., 2020).

Centralized vs. local knowledge CDR-based methods enable a top-down, centralized

and standardized approach to program targeting, rather than a bottom-up approach that

prioritizes local knowledge that can be elicited, for example, through community wealth

rankings. While the empirical results in this paper indicate that the efficiency gains from

CDR-based targeting are substantial, it may reinforce existing power structures (Taylor,

2016; Blumenstock, 2018a; Abebe et al., 2021). Efficiency gains should also be consid-

ered within the context of evidence suggesting that participating communities may prefer

community-based approaches (Alatas et al., 2012), but also may perceive them as less legit-

imate (Premand & Schnitzer, 2020).

To summarize, our results suggest that there is potential for using CDR-based methods

to determine eligibility for economic aid or interventions, substantially reducing program

targeting overhead and costs. Our results also indicate that CDR-based methods may com-

plement and enhance existing survey-based methods. We note, however, that the practical

and ethical limitations to CDR-based targeting are significant. We emphasize the need to

consider these limitations and the constraints of specific local contexts alongside the efficiency

gains offered by CDR-based targeting.
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Tables and Figures

Table 1: Summary statistics for different samples of survey respondents

(1) (2) (3) (4)

Outcome Full sample Matched Unmatched Unmatched

(all observations) Subsample Owns Phone No Phone

Panel A: Balance of Covariates

Ultra-Poor 0.42 (0.49) 0.27 (0.45) 0.40 (0.49) 0.66 (0.47)

Asset Index 0.00 (2.01) 1.36 (2.60) -0.05 (1.76) -1.35 (0.79)

Log Expenditures 4.43 (0.71) 4.64 (0.70) 4.46 (0.70) 4.12 (0.65)

# Phones 1.35 (1.18) 1.72 (1.33) 1.59 (1.04) 0.00 (0.00)

Food Security Index 0.30 (0.90) 0.35 (0.74) 0.34 (0.93) 0.10 (0.89)

Financial Inclusion Index 0.15 (1.27) 0.34 (1.39) 0.15 (1.32) -0.05 (0.79)

Psychological Well-being Index 0.35 (1.01) 0.38 (1.00) 0.43 (0.97) -0.02 (1.07)

CWR Group 0.62 (0.90) 0.89 (1.02) 0.62 (0.88) 0.26 (0.66)

Panel B: Correlations Between Outcomes

Ultra-Poor ←→ Asset Index -0.32 -0.30 -0.27 -0.14

Ultra-Poor ←→ Consumption -0.39 -0.30 -0.39 -0.26

Asset Index ←→ Consumption 0.37 0.34 0.34 0.15

N 2,814 535 1,807 472

Notes: Table reports average characteristics, with standard deviations in parentheses, of TUP survey
respondents. Each column represents a different sample of respondents: (1) all respondents in the TUP
survey; (2) Just those respondents who own a phone, where the phone number matches to the CDR
obtained from the mobile phone operator; (3) Respondents who report owning a phone, but whose phone
number does not match to the CDR obtained from the operator; (4) Respondents who report they do not
own a phone.
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Table 2: Targeting simulation results

(1) (2) (3) (4)

Targeting Method AUC Accuracy Precision Recall

Panel A: Matched Sample (N=535) - for whom we have survey and CDR data

Random 0.50 (0.028) 0.60 (0.025) 0.27 (0.038) 0.27 (0.038)

Asset Index 0.73 (0.024) 0.72 (0.020) 0.49 (0.041) 0.49 (0.041)

Consumption 0.71 (0.026) 0.69 (0.023) 0.45 (0.038) 0.45 (0.038)

CDR 0.68 (0.027) 0.69 (0.021) 0.42 (0.042) 0.42 (0.042)

Combined 0.78 (0.022) 0.75 (0.020) 0.55 (0.039) 0.55 (0.039)

Panel B: Balanced Sample (N=1,007) - as above, plus households without phones

Random 0.50 (0.017) 0.90 (0.006) 0.05 (0.010) 0.05 (0.010)

Asset Index 0.72 (0.026) 0.90 (0.006) 0.10 (0.013) 0.10 (0.013)

Consumption 0.70 (0.028) 0.90 (0.006) 0.15 (0.025) 0.15 (0.025)

CDR (Target Phoneless First) 0.68 (0.030) 0.90 (0.006) 0.11 (0.035) 0.11 (0.035)

CDR (Target Phoneless Last) 0.51 (0.028) 0.90 (0.006) 0.12 (0.033) 0.12 (0.033)

Combined (Target Phoneless First) 0.74 (0.026) 0.90 (0.006) 0.11 (0.046) 0.11 (0.046)

Combined (Target Phoneless Last) 0.57 (0.022) 0.90 (0.006) 0.18 (0.007) 0.18 (0.007)

Panel C: Full Sample (N=2,814) - as above, plus households with phones on other networks

Random 0.50 (0.009) 0.89 (0.005) 0.06 (0.007) 0.06 (0.007)

Asset Index 0.65 (0.017) 0.89 (0.005) 0.07 (0.014) 0.07 (0.014)

Consumption 0.69 (0.015) 0.89 (0.006) 0.08 (0.031) 0.08 (0.031)

CDR (Target Phoneless First) 0.52 (0.008) 0.89 (0.005) 0.06 (0.008) 0.06 (0.008)

CDR (Target Phoneless Last) 0.48 (0.008) 0.89 (0.005) 0.08 (0.010) 0.08 (0.010)

Combined (Target Phoneless First) 0.52 (0.008) 0.89 (0.005) 0.06 (0.008) 0.06 (0.008)

Combined (Target Phoneless Last) 0.49 (0.008) 0.89 (0.005) 0.09 (0.009) 0.09 (0.009)

Notes: Four different measures of performance (columns) reported for different targeting methods
(rows), using different samples of survey respondents (panels). Standard deviations, calculated
using 1,000 bootstrap samples, in parentheses. Panel A: The 535-household subsample that is
matched to CDR. Panel B: The 535-household matched sample, plus the 472 households that do
not have a phone; this is meant to approximate targeting performance if CDR from all mobile
networks were available. Sample weights are applied as described in Section 2.4. Panel C: All
2,814 observations from the TUP survey, including households matched to CDR, households that
own phones not matched to CDR, and households without phones, with sample weights applied.
For Panels B and C, we simulate two types of CDR-based targeting: targeting households without
phones first and targeting households without phones last.
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Table 3: What types of households are misclassified?

Panel A: Ultra-Poor Households (Differences Between True Positives and False Negatives)

Asset Index Consumption CDR

TP FN Diff. TP FN Diff. TP FN Diff.

Ultra-Poor 1.00
(0.00)

1.00
(0.00)

0.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.00
(0.00)

1.00
(0.00)

1.00
(0.00)

0.00
(0.00)

Asset Index -1.03
(0.49)

1.18
(1.34)

-2.21
(0.17)

-0.34
(1.09)

0.47
(1.69)

-0.81
(0.23)

-0.09
(1.16)

0.25
(1.70)

-0.34
(0.24)

Consumption 4.21
(0.70)

4.40
(0.62)

-0.19
(0.11)

3.78
(0.32)

4.74
(0.56)

-0.96
(0.07)

4.29
(0.60)

4.32
(0.71)

-0.02
(0.11)

# Phones 0.89
(0.68)

1.63
(1.12)

-0.74
(0.15)

1.02
(0.73)

1.48
(1.14)

-0.46
(0.16)

1.18
(0.61)

1.33
(1.21)

-0.16
(0.15)

Food Security In-
dex

-0.59
(1.13)

-0.51
(1.10)

-0.08
(0.18)

-0.83
(1.19)

-0.32
(0.99)

-0.51
(0.18)

-0.51
(1.14)

-0.58
(1.09)

0.07
(0.19)

Financial Inclusion
Index

-0.00
(0.79)

0.29
(1.02)

-0.29
(0.15)

0.10
(0.80)

0.19
(1.02)

-0.09
(0.15)

0.16
(0.98)

0.14
(0.88)

0.02
(0.16)

Psychological Well-
being Index

-0.35
(0.92)

-0.13
(0.94)

-0.22
(0.15)

-0.37
(0.86)

-0.12
(0.98)

-0.24
(0.15)

-0.31
(0.81)

-0.17
(1.02)

-0.14
(0.15)

CWR Group 0.09
(0.44)

0.01
(0.12)

0.07
(0.05)

0.02
(0.12)

0.08
(0.41)

-0.06
(0.05)

0.06
(0.40)

0.04
(0.24)

0.03
(0.06)

Panel B: Non-Ultra-Poor Households (Differences Between True Negatives and False Positives)

Asset Index Consumption CDR

TN FP Diff. TN FP Diff. TN FP Diff.

Ultra-Poor 0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

0.00
(0.00)

Asset Index 2.53
(2.62)

-1.08
(0.50)

3.61
(0.16)

2.06
(2.92)

0.94
(1.75)

1.12
(0.26)

1.94
(2.87)

1.43
(2.27)

0.51
(0.30)

Consumption 4.82
(0.66)

4.57
(0.65)

0.25
(0.08)

4.97
(0.58)

3.98
(0.23)

0.99
(0.04)

4.78
(0.68)

4.74
(0.61)

0.04
(0.08)

# Phones 2.11
(1.43)

0.96
(0.76)

1.15
(0.12)

1.98
(1.49)

1.52
(0.92)

0.46
(0.13)

1.91
(1.44)

1.80
(1.24)

0.11
(0.16)

Food Security In-
dex

0.24
(0.87)

-0.16
(1.03)

0.40
(0.13)

0.24
(0.88)

-0.14
(0.99)

0.37
(0.12)

0.15
(0.91)

0.18
(0.94)

-0.02
(0.12)

Financial Inclusion
Index

0.80
(4.92)

-0.01
(0.82)

0.82
(0.29)

0.77
(4.94)

0.18
(1.24)

0.59
(0.31)

0.78
(4.98)

0.17
(1.10)

0.61
(0.31)

Psychological Well-
being Index

0.69
(0.97)

0.21
(0.75)

0.47
(0.10)

0.62
(0.98)

0.49
(0.80)

0.13
(0.11)

0.62
(0.95)

0.49
(0.93)

0.13
(0.12)

CWR Group 1.30
(1.00)

0.84
(0.96)

0.46
(0.12)

1.23
(1.03)

1.13
(0.94)

0.10
(0.12)

1.26
(1.01)

1.01
(0.98)

0.25
(0.12)

Notes: Table shows the average characteristics (with standard deviations in parentheses) of households
that are correctly classified (True Positives [TP] and True Negatives [TN]) and incorrectly classified (False
Negatives [FN] and False Positives [FP]), as well as the difference in average characteristics between cor-
rectly and incorrectly classified households (Diff.). Panel A: Differences between ultra-poor households
correctly classified as such and those misclassified as non-ultra-poor (errors of exclusion). Panel B: Differ-
ences between non-ultra-poor households correctly classified as such and those misclassified as ultra-poor
(errors of inclusion).
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Table 4: Overlap in targeting errors between methods

Asset Index Consumption CDR Combined

Panel A: Overlap in Errors of Exclusion

Asset Index 100.00% 65.33% 57.33% 66.67%

Consumption 61.25% 100.00% 56.25% 62.50%

CDR 51.19% 53.57% 100.00% 63.10%

Combined 75.76% 75.76% 80.30% 100.00%

Panel B: Overlap in Errors of Inclusion

Asset Index 100.00% 26.67% 22.67% 48.00%

Consumption 25.00% 100.00% 16.25% 37.50%

CDR 20.24% 15.48% 100.00% 46.43%

Combined 54.55% 45.45% 59.09% 100.00%

Notes: Table measures the extent to which the targeting errors produced
by each pair of targeting methods overlap. Evaluation is performed on the
matched sample of 535 TUP respondents. Panel A: Overlap between ultra-
poor households that are misclassified as non-ultra-poor (errors of exclusion)
for each targeting method. Panel B: Overlap between non-ultra-poor house-
holds that are misclassified as ultra-poor (errors of inclusion).
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Figure 1: Predicting ultra-poor status from CDR

.

Notes: Panel A: Comparing the predictive accuracy of assets, consumption, and CDR-based methods for
identifying the ultra-poor in our 535-household sample. To adjust for class balance, thresholds for classi-
fication (shown in dashed black vertical lines) are selected such that the correct number of households are
identified as ultra-poor. Panel B: Confusion matrices showing the targeting accuracy of each method shown
in Panel A. Panel C: ROC curves for each of the four targeting methods. In the third subplot, the CDR-based
and combined methods target non-phone-owning households first as described in Section 2.4

.
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Online Appendix

A Machine learning methods and hyperparameters

Although our paper is focused on identifying the ultra-poor with CDR, we experiment with

predicting four measures of ground-truth welfare with CDR features: ultra-poor status (bi-

nary), below the national poverty line (binary), asset index (continuous), and log consump-

tion (continuous). For the binary measures, we experiment with four classification models:

logistic regression (unregularized), logistic regression with L1 penalty, a random forest, and

a gradient boosting model. For the continuous measures, we experiment with four regression

models: linear regression, LASSO regression, a random forest, and a gradient boosting model.

The linear models and random forest are implemented in Python’s scikit-learn package. The

gradient boosting model is implemented with Microsoft’s LightGBM.

In each case, we produce predictions out-of-sample over 10-fold cross validation. We

use nested cross-validation to tune the hyperparameters of each model over 5-fold cross-

validation within each of the outer folds to avoid any information leakage between folds.

We report both the mean score across the 10 folds as well as the overall score when data

from all folds is pooled together. For the linear models and random forest, missing data

is mean-imputed and each feature is scaled to zero mean and unit variance before fitting

models (these transformations are done separately for each fold, with parameters fitted only

on the training data for each fold). For the gradient boosting model missing values are

left as-is and features are not scaled. We re-fit the model on the entire data, again tuning

hyperparameters over 5-fold cross validation, to report selected hyperparameters and feature

importances. We also report the top 5 features for each model, determined by the magnitude

of the coefficient for the linear models, and by and by maximum impurity reductions for the

tree-based models.

Hyperparameters are selected from the following grids for each model:

Linear/Logistic Regression

• Drop columns with missingness over: {50%, 80%, 100%}

• Drop columns with variance under: {0, 0.01, 0.1}

• Winsorization limit: {0%, 1%, 5%}
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LASSO Regression

• Drop columns with missingness over: {50%, 80%, 100%}

• Drop columns with variance under: {0, 0.01, 0.1}

• Winsorization limit: {0%, 1%, 5%}

• L1 penalty: {0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100}

Random Forest

• Drop columns with missingness over: {50%, 80%, 100%}

• Drop columns with variance under: {0, 0.01, 0.1}

• Winsorization limit: {0%, 1%, 5%}

• Number of Trees: {20, 50, 100}

• Maximum Depth: {1, 2, 4, 6, 8, 10, 12}

Gradient Boosting Model

• Drop columns with missingness over: {50%, 80%, 100%}

• Drop columns with variance under: {0, 0.01, 0.1}

• Winsorization limit: {0%, 1%, 5%}

• Number of Trees: {20, 50, 100}

• Minimum data in leaf: {5, 10}

• Number of leaves: {5, 10, 20}

• Learning rate: {0.05, 0.075}
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B Abbreviations in Feature Names

Figure S4 and Tables S7, S2, and S6 use a set of abbreviations in CDR feature names. This

appendix lists the relevant abbreviations.

• BOC: Balance of contacts

• CD: Call duration

• IPC: Interactions per contact

• IT: Interevent time

• NOI: Number of interactions

• PPD: Percent pareto durations (percentage of call contacts accounting for 80% of call

time)

• PPI: Percent pareto interactions (percentage of contacts accounting for 80% of sub-

scriber’s interactions)

• RD: Response delay

• RR: Response rate

• WD: Weekday

• WE: Weekend

C Cost and Speed Calculations

In the discussion section we provide a cost and speed comparison between targeting meth-

ods, as some of the value-add of the phone-based targeting approach relies on how cheap

and quick it is compared to asset, consumption- or CBT-based targeting approaches. Ad-

ministrative data on targeting costs was not collected as part of the TUP program, so we

turn to other studies of program targeting to estimate the costs of CBT and asset-based (or

PMT) methods. We treat the costs of an asset index-based and PMT approach as equiv-

alent in this section, as they both require comprehensive household surveys.13 We identify

13In practice, an asset-based approach may be slightly cheaper than a PMT, as it does not require con-
ducting a consumption module for a subset of surveys to train a PMT.
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three studies that provide variable targeting costs for PMT and CBT methods: Alatas et

al. (2012) provide variable costs for CBT and PMT-based targeting of a single program

in Indonesia; Karlan & Thuysbaert (2019) provide variable costs for CBT and PMT-based

targeting of an ultra-poor program in Honduras and one in Peru; and Schnitzer & Stoeffler

(2021) provide variable costs for three CBT-based programs and four PMT-based programs

in seven countries in Sub-Saharan Africa.14 Table S9 summarizes the cost estimates from

each of these papers; we use the median per-household targeting cost for each method in

our analysis ($2.20 per household for CBT and $4.00 per household for PMT). While using

these global estimates to inform our model of targeting costs in Afghanistan is not ideal,

since no data on targeting costs from the TUP program or other anti-poverty programs is

available for the country, these values are the best available estimate on which to base our

cost analysis.

We are unable to find any papers that document the targeting cost associated with

consumption-based targeting, as consumption data is rarely used as a real-world targeting

strategy. We therefore consider the costs of consumption to be strictly greater than the costs

of targeting on a PMT, since consumption modules take longer to collect than PMT data in

household surveys. In practice, we expect that the cost of targeting on consumption would

be substantially greater than the cost of targeting on a PMT.

For phone-based targeting, we associate no cost with the collection and analysis of phone

data. While in some cases phone data may require purchase from the operator, partnerships

between mobile network operators and governments for social protection and public health

applications have not, to date, involved payment (Milusheva et al., 2021). The fixed cost

of mobile data analysis is non-negligible but its contribution to marginal cost is close to

zero as the number of screened households increases. A phone-based targeting method

that collects informed consent from program applicants to analyze phone data would have

nonzero marginal costs, though the cost of consent would depend on the modality of consent

collection. If consent was collected in person, these costs would likely be only slightly lower

than those of a PMT, as every household would need to be surveyed in person. If consent

was collected over the phone via SMS or voice, these costs would likely be significantly lower.

It is worth noting that our benchmark in this paper is the hybrid model with a CBT

plus verification component, but due to limited estimates in the literature we leave this

strategy out of our cost analysis. We consider the CBT a lower-bound estimate for the

hybrid strategy, and therefore our results would be qualitatively unchanged if the hybrid

14To our knowledge, no studies incorporate fixed targeting costs, as these are typically indistinguishable
from fixed costs of other components of program set-up.
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strategy were also considered in cost comparison. Alatas et al. (2012) suggest that there are

synergies in targeting approaches so that combining approaches is less costly than the sum

of the costs of the two approaches individually, but costs are certainly greater than that of

CBT targeting alone.

Our cost analysis finally relies upon administrative data from the TUP program. The

TUP program in its entirety served 7,500 households across six provinces of Afghanistan.

While there is no data available on the total number of households screened by the TUP

program, the portion of the program in Balkh province that was enrolled in the RCT iden-

tified 1,235 ultra-poor households out of 20,702 households screened (Bedoya et al., 2019).

Assuming similar eligibility rates across Afghanistan, we estimate that the TUP program

as a whole likely screened around 125,721,households. We use this value to estimate total

targeting costs for the TUP program under counterfactual targeting approaches. Eligible

households received benefits totaling $1,688, including a productive asset, cash transfers, a

health voucher, training, biweekly social worker visits, and veterinarian visit once every two

months during the year of intervention. The total benefits dispersed by the program were

therefore on the order of 12.7 million (although the total program costs, including overhead,

were closer to 15 million (Bedoya et al., 2019)); we use the total value of benefits to compare

the costs of program targeting using our set of counterfactual targeting approaches to the

direct costs of program benefits in Table S8. We find that targeting costs for a PMT or

asset-based approach would represent approximately 3.97% of the total benefits delivered in

the program; costs for a CBT approach would represent approximately 2.18% of the total

benefits. In comparison, costs for the phone-based approach would be negligible.

When it comes to speed, in-person data collection for an asset-based (or PMT) targeting

approach typically takes months or years to prepare and implement (World Bank, 2020). The

CDR-based approach can be rolled out comparatively quickly — but there are still practical

hurdles to implementation. First, training data for the CDR-based poverty prediction model

must be collected, preferably shortly prior to program roll-out (Aiken et al., 2021). While in

the TUP project training data was collected in-person in a household survey, in other contexts

training data collection was expedited via a phone survey (Blumenstock et al., 2015; Aiken

et al., 2021). Even if data is collected over the phone, it will typically take several weeks to

design a survey instrument and collect data. Second, the CDR-based method requires data

from mobile network operators. Data sharing agreements with mobile network operators take

at minimum a few weeks to arrange, and substantially longer in the worst case (Milusheva et

al., 2021). Third, and finally, training a CDR-based poverty prediction model is expensive in
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terms of memory, computing power, and human capacity, and will likely take several weeks

to implement.
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Supplementary Tables and Figures

Figure S1: Histograms showing the distribution of each underlying asset used to construct
the asset index.
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Figure S2: Distributions of asset index and log-transformed consumption, for the entire sur-
vey sample, separately for ultra-poor and non-ultra-poor households, and again separately
for households in the subsample matched to CDR, households outside of the matched sub-
sample that report owning at least one mobile phone, and households outside of the matched
subsample that report not owning a mobile phone.

Figure S3: Correlation between asset index and log-transformed consumption, separately for
the entire survey sample and the matched subsample. We include the LOESS fit, along with
a 95% confidence interval.
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Figure S4: Kernel density estimates for 16 of the most important features for predicting
ultra-poor status from CDR, with density estimates shown separately from UP and NUP
households. Since many features are near-redundant, rather than showing the raw top 16
features from the table above, we show 16 selected features from the top 50. See Appendix
B for abbreviations in feature names.
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Table S1: Direction of first principal component of asset ownership

Asset Magnitude

Radio/CD Player 0.04

TV 0.37

TV Dish 0.29

VCR/DVD Player 0.15

Refridgerator 0.25

Generator 0.11

Matress 0.24

Mobile Phone 0.31

Non-Mobile Phone 0.06

Iron 0.36

Bed Frame 0.29

Jewelry 0.27

Mosquito Net 0.26

Mosquito Repellent Candle 0.08

Fan 0.37

Camera 0.16

Notes: The asset index is calculated over the
entire 2,814 household sample, without sam-
ple weights. We standardize each of the fea-
tures to zero mean and unit variance before
decomposition. The first principal component
accounts for 25.28% of the variation in these
standardized features.
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Table S2: Feature importances (gradient boosting model)

Feature Importance Feature Importance

CD WE Call Median 8 IT Recharges Night Min 3

% At Home WD Night 7 BOC WD Call Median 3

IPC WD Night Call Kurtosis 7 IT WE Call Min 2

CD Day Call Median 6 BOC WD Night Call Kurtosis 2

IT WE Call Mean 6 IPC Day Call Kurtosis 2

Churn Rate Mean 5 % Nocturnal WD Call 2

IPC Day Call Skew 5 IT WD Day Text Mean 2

IT Recharges WD Median 5 CD Night Call Max 2

% At Home Day 4 IT WE Call Skew 2

% Initiated Interactions Day Call 4 IPC WE Day Call Kurtosis 2

% Initiated Interactions WD Day Call 4 IT WE Text Median 2

BOC WD Call Max 4 % At Home WE Night 2

% Initiated Interactions WD Night Call 3 Entropy Contacts WE Day Call 2

PPD Night Call 3 # Recharges WD Day 2

IT Recharges WD Night Min 3 Entropy Antennas WD 2

IT Recharges Night Median 3 IPC Night Call Skew 2

IPC WD Night Text Mean 3 IT WE Night Call Mean 2

IT Recharges Day Kurtosis 3 # Contacts Day Call 2

IT Night Text Min 3 CD WD Call Max 2

IT WE Day Text Median 3 IT Day Call Mean 2

# Antennas WD 3 IT WD Night Text Min 2

CD WD Night Call Kurtosis 3 Entropy Antennas Day 2

IPC Night Call Kurtosis 3 % Initiated Interactions WE Day Call 2

IPC WE Night Call Kurtosis 3 CD WE Day Call Kurtosis 1

IPC WE Night Call Skew 3 IPC Day Call Std 1

Notes: For our selected machine learning model – the gradient boosting model used to predict ultra-poor status
from CDR features – we display feature importances for the top 50 features. Feature importances for the gradient
boosting model represent the total number of times the feature is used for a split in the entire ensemble of decision
trees. We report feature importances when the model is trained on all 535 observations (rather than over cross
validation). See Appendix B for abbreviations in feature names.
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Table S3: Details of machine learning models

Model AUC Top Five Features

Logistic (No Penalty) 0.53 Reporting # Records, Active Days, Active Days Day, Active Days
Night, Active Days WD

Logistic (L1 Penalty) 0.66 Reporting # Records, Active Days, Active Days Day, Active Days
Night, Active Days WD

Random Forest 0.68 NOI Out Day Call, NOI Out WD Day Call, Nois Call, Entropy
Contacts Night Call, NOI Out WE Call

Gradient Boosting 0.68 CD WE Call Median, % At Home WD Night, IPC WD Night Call
Kurtosis, CD Day Call Median, IT WE Call Mean

Notes: Each row indicates performance (AUC) of a different machine learning algorithm, trained to
predict ultra-poor status on the sample of 535 matched households. AUC is reported as the mean
AUC score over 10-fold cross validation. See Appendix B for details of features.

Table S4: Machine learning an asset index

Model AUC Score Top Five Features

Logistic (L1 Penalty) 0.60 TV, TV Dish, Fridge, Mattress, Mobile Phone

Random Forest 0.73 Fridge, Iron, Bedframe, Mattress, TV Dish

Gradient Boosting 0.74 Mattress, Bedframe, Fridge, Mobile Phone, TV Dish

Notes: The asset index benchmark we used is constructed following standard procedures based on principal
comnponent analysis (see Table S1). However, it is possible that an alternative asset-based predictor,
trained using machine learning to predict ultra-poor status directly from the 16 underlying components,
could perform better. We test this hypothesis by adapting our machine learning pipeline for identifying
the ultra-poor from CDR to the task of identifying the ultra-poor from asset possession. As with the
CDR-based prediction, we evaluate the model over nested cross validation: the model’s predictions are
evaluated out-of-sample over 10-fold cross validation, and within each fold hyperparameters are tuned over
5-fold cross validation. We retrain the model on the entire dataset to report hyperparameters and feature
importances. Hyperparameters are chosen from the same grid as for the CDR-based models. We display
the AUC score and top features for each model.

38



Table S5: Performance using one, two or three predictor datasets

Data Sources AUC

Assets 0.73 (0.025)

Consumption 0.71 (0.000)

CDR 0.68 (0.028)

Assets + Consumption 0.76 (0.017)

Assets + CDR 0.76 (0.025)

Consumption + CDR 0.75 (0.016)

Assets + Consumption + CDR 0.78 (0.019)

Notes: AUC scores for targeting methods using a sin-
gle data source, pair of data sources, and all three data
sources together. Standard deviations are calculated
from 1,000 bootstrapped samples of the same size as the
original sample, drawn with replacement.

Table S6: Matching household to multiple phone numbers

Model AUC Top Five Features

Logistic (No Penalty) 0.50 Reporting # Records, Active Days, Active Days Day, Active Days
Night, Active Days WD

Logistic (L1 Penalty) 0.65 Reporting # Records, Active Days, Active Days Day, Active Days
Night, Active Days WD

Random Forest 0.67 NOI call, NOI Out WE Call, IPC WD Night Call Kurtosis, IPC
Night Call Kurtosis, IT Recharges WD Day Min

Gradient Boosting 0.66 Churn Rate Std, CD WE Call Median, IPC WD Night Call Kur-
tosis, IPC Day Call Skew, % Initiated Interactions Day Call

Notes: In our main analysis, for multi-phone households we use only the phone number belonging
to the household head (or to a random household member, where no household head is specified),
leaving 535 household-level observations. Here we consider instead using machine learning methods
to predict individual-level ultra-poverty, with a dataset of 634 individual phone numbers matched to
the ground-truth wealth measures for the associated households. We find that the individual-level
models are slightly less accurate than the household-level models presented in the main paper, but we
focus on the household-level models in the main paper since the household was the unit of targeting
in the TUP program. See Appendix B for abbreviations in feature names.
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Table S7: Predicting other measures of poverty from CDR

Model R2 or AUC Top Five Features

Panel A: Predicting below poverty line (binary)

Logistic (No Penalty) 0.53 Reporting # Records, Active Days, Active Days Day, Active Days
Night, Active Days WD

Logistic (L1 Penalty) 0.53 Reporting # Records, Active Days, Active Days Day, Active Days
Night, Active Days WD

Random Forest 0.56 NOI Out Night Call, BOC Night Call Kurtosis, CD Day Call
Skew, Nois Night Call, IT Night Call Kurtosis

Gradient Boosting 0.55 IT Night Call Kurtosis, IT Text Max, Radius Gyration WE Night,
Entropy Antennas, NOI Out WD Call

Panel B: Predicting consumption (continuous)

Linear Regression -0.21 % Pareto Recharges WE Night, % Pareto Recharges WE, %
Pareto Recharges Night, Entropy Contacts WD Day Text, PPI
WE Night Text

LASSO Regression -0.00 Reporting # Records, PPI Text, PPI Day Text, PPI Night Call,
PPI Night Text

Random Forest -0.02 Churn Rate Mean, IPC WE Night Call Kurtosis, IT Recharges
WE Day Skew, IPC WE Night Call Skew, CD WE Call Median

Gradient Boosting -0.03 CD WD Night Call Skew, IPC WD Day Text Skew, IT WD Night
Call Min, IT WD Night Call Max, IT WE Night Call Max

Panel C: Predicting asset index (continuous)

Linear Regression -0.06 IPC Text Min, IPC WD Text Min, IPC WD Day Text Min, BOC
WD Text Min, % Initiated Conversations WD

LASSO Regression 0.00 Active Days WE Day, Active Days WD, Active Days WE, Active
Days, Active Days WD Day

Random Forest 0.00 IT Night Call Skew, IPC Text Min, IT WE Day Call Median, IT
WE Call Median, Entropy Contacts WE Night Call

Gradient Boosting -0.02 IT Text Median, Entropy Antennas WE, Entropy Antennas WD
Night, Entropy Contacts WE Night Call, IT Recharges Night Min

Panel D: Predicting CWR group (continuous)

Linear Regression 0.01 PPI Night Text, IT Recharges Day Skew, IPC WE Call Min,
Active Days WE Night, IT Recharges WD Day Skew

LASSO Regression 0.05 PPI Night Text, Active Days WE Day, Active Days WE Night,
IT Recharges WD Day Skew, IT Recharges Day Skew

Random Forest 0.04 # Contacts WE Day Call, Entropy Contacts WD Night Call, IPC
Night Call Kurtosis, # Contacts WE Call, IT Call Kurtosis

Gradient Boosting 0.03 IT Call Kurtosis, IT Recharges Day Skew, # Contacts WE Day
Call, IT Recharges Day Kurtosis, IPC WD Night Call Kurtosis

Notes: Machine learning results for predicting: (A) Below-poverty-line status, using consumption data and
based on Afghanistan’s national poverty line; (B) Total consumption (log-scale); (C) Asset index; and (D)
Community Wealth Ranking. Performance is evaluated on the sample of 535 matched households. Binary
metrics (A) are evaluated using the mean AUC score over 10-fold cross validation; Continuous metrics (B-D)
are evaluated using the mean R2 score over 10-fold cross validation. See Appendix B for details of features.
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Table S8: Variable costs of different targeting methods

Cost per Total cost Fraction of program costs

Targeting Method HH screened of targeting spent on targeting

CBT $2.20 $276,586 2.18%

PMT $4.00 $502,884 3.97%

Consumption >$4.00 >$502,884 >3.97%

Phone $0.00 $0 0.00%

Notes: Costs for the TUP program, based on costs estimated from the literature. The TUP
program screened an estimated 125,721 households; benefits valued at $1,668 were provided
to each of the 7,500 beneficiary households for a total benefits distribution of approximately
$12.7 million. The total value of benefits is used to obtain the targeting costs as a percentage
of total program costs. For the Phone option, we assume no contact with beneficiaries is
required; if contact were required, for instance to collect informed consent, variable costs
would increase accordingly.
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Table S9: Costs for CBT and PMT targeting methods obtained from the literature

Source Location Cost per household

Panel A: CBT

Alatas et al. (2012) Indonesia $1.20

Karlan and Thuysbaert (2019) Honduras $1.67

Karlan and Thuysbaert (2019) Peru $1.90

Schnitzer and Stoeffler (2021) Burkina Faso $5.60

Schnitzer and Stoeffler (2021) Niger $5.40

Schnitzer and Stoeffler (2021) Senegal $3.20

Median $2.20

Panel B: PMT

Alatas et al. (2012) Indonesia $2.70

Karlan and Thuysbaert (2019) Honduras $2.62

Karlan and Thuysbaert (2019) Peru $3.05

Schnitzer and Stoeffler (2021) Burkina Faso $5.69

Schnitzer and Stoeffler (2021) Chad $9.50

Schnitzer and Stoeffler (2021) Mali $4.00

Schnitzer and Stoeffler (2021) Niger $6.80

Median $4.00

Notes: Costs per household screened for two targeting methods obtained from three
papers in the targeting literature. Costs in Alatas et al. (2012) are provided per-village;
we use the average of 54 households per village to obtain per-household targeting costs.
Cost for the CBT in Karlan & Thuysbaert (2019) is provided as part of the cost for a
hybrid CBT and verification approach; although an individual cost for the cBT alone is
provided, it is possible this cost excludes some of the mutual costs for the two exercises
and is therefore an underestimate of costs of a CBT alone. We use the median of the
distribution of targeting costs in our cost analysis.
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