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component for monitoring poverty rates over time. The latter

issue is especially pertinent for efforts aimed at reaching the

SDGs, which need to be monitored at national and subnational

levels over the coming 15 years [5].

The definition of poverty and the measurement methods

used to identify poor persons are part of a longstanding discus-

sion in development economics [6–9]. Different approaches

exist to calculate indicators of living standards, including

the construction of unidimensional and multidimensional indi-

ces, as well as the use of monetary or non-monetary metrics.

A further discussion for living standard indices regards the

methods used to set appropriate thresholds (poverty lines)

under which a person is defined as poor [10–12]. Monetary-

based metrics identify poverty as a shortfall in consumption

(or income) and measure whether households or individuals

fall above or below a defined poverty line [13,14]. By contrast,

asset-based indicators define household welfare based on

asset ownership (e.g. refrigerator, radio or bicycle), dwelling

characteristics, and access to basic services like clean water and

electricity [15]. Moreover, poverty indicators can capture the

status of a household or individual at a given point in time, or

identify chronic versus transient poverty over time [14,16–18].

Every approach used to calculate indicators of living stan-

dards for a population has its advantages and disadvantages,

and each indicator discerns different characteristics of the

population. Consumption data can be highly noisy due to

recall error or because expenditures occurred outside the

period captured in surveys, but provide a better shorter-

term concept of poverty [19,20]. Asset-based measures have

been regarded as a better proxy for the long-term status of

households as they are thought to be more representative

of permanent income or long-term control of resources

[20–22]. The same population can be ranked quite differently

along a poverty distribution when comparing consumption

and asset-based measures and many assumptions are necess-

arily accepted in order do such comparisons. These include

assumptions that the data represent the same populations

in the same time period; that the indicators are well matched

in their wording and response options; and that the poverty

measures have a similar distribution of responses [20,23].

Furthermore, it is difficult to compare asset-based measures

to income or consumption as it is not straightforward to

link the productive potential of a household to their assets

owned; this can be particularly relevant in rural areas

where the return on physical assets can be strongly environ-

mentally related and interactions among assets may be

important [24]. These factors necessitate a flexible approach

to modelling poverty as indicators representing asset-based,

consumption-based and income-based measures are not

necessarily expected to produce similar results.

While numerous high-resolution indicators of human wel-

fare are routinely collected for populations in high-income

countries, the geographical distribution of poverty in low-

and middle-income countries (LMICs) is often uncertain [25].

Small area estimation (SAE) forms the standard approach to

produce sub-national estimates of the proportion of house-

holds in poverty. SAE uses statistical techniques to estimate

parameters for sub-populations by combining household

survey and census data to use the detail in household surveys

and the coverage of the census. Common variables between the

two are used to predict a poverty metric across the population

[26–28]. These techniques rely on the availability of census

data, which are typically collected every 10 years and often
released with a delay of one or more years, making the updat-

ing of poverty estimates challenging. Recently, there are

promising signs that novel sources of high-resolution data

can provide an accurate and up-to-date indication of living

conditions. In particular, recent work illustrates the potential

of features derived from remote sensing and geographic infor-

mation system data [29–35] (hereafter called RS data) and

mobile operator call detail records (CDRs) [36–39]. However,

the predictive power in integrating these two data sources,

and their ability to estimate different measures of poverty has

not been evaluated.

RS and CDR data capture distinct and complimentary cor-

relates of human living conditions and behaviour. For example,

RS data of physical properties, such as rainfall, temperature

and vegetation capture information related to agricultural pro-

ductivity, while distance to roads and cities reflects access to

markets and information. Similarly, monthly credit consump-

tion on mobile phones and the proportion of people in an

area using mobile phones indicate household access to finan-

cial resources, while movements of mobile phones and the

structure and geographical reach of the calling networks

of individuals may be correlated with remittance flows and

economic opportunities [39–41].

RS and CDR data are generated at different spatial scales,

which further complement each other. The CDR indicators

used in this study are derived from data aggregated at the

level of the physical cell towers to preserve the privacy of

individual subscribers. Thus, the spatial resolution of these

data is determined by tower coverage, which is larger in

rural areas and fine-scaled in urban areas. By contrast, RS

data can be relatively coarse in urban areas and only capture

physical properties of the land. As RS and CDR data are con-

tinually collected, the ability to produce accurate maps using

these data types offers the promise of ongoing subnational

monitoring required by the SDGs.

Here, we use overlapping sources of RS, CDR and traditional

survey-based data from Bangladesh to provide the first sys-

tematic evaluation of the extent to which different sources of

input data can accurately estimate three different measures of

poverty. To date, the predictive power in integrating these data

sources, and their ability to estimate different measures of

poverty, has not been evaluated. We use hierarchical Bayesian

geostatistical models (BGMs) to construct highly granular

maps of poverty for three commonly used indicators of

living standards: the Demographic and Health Surveys

(DHS) Wealth Index (WI); an indicator of household expendi-

tures (Progress out of Poverty Index, PPI) [42] and reported

household monetary income. We additionally compare our

results with previous poverty estimates for Bangladesh at

coarser and finer resolutions.
2. Material and methods
2.1. Spatial scale and data processing
All data used in this study were processed to ensure that projec-

tions, resolutions and extents matched. The spatial scale of

analysis was based on approximating the mobile tower coverage

areas using Voronoi tessellation [43] and models were built on

the scale of the Voronoi polygons (figure 1). This allowed us to

maintain the fine spatial detail in mobile phone data within

urban areas, as Voronoi polygon size, and corresponding spatial

detail, varies greatly from urban to rural areas (minimum 60 m,
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Figure 1. Spatial structure of Voronoi polygons based on the configuration of mobile phone towers in Bangladesh. The zoom window shows the spatial detail of
Dhaka.
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maximum 5 km) as shown in the figure. All datasets were then

summarized to spatially align with these polygons. In practice,

each polygon was assigned RS and CDR values representing

the mean, sum or mode of the corresponding data. The survey

data are matched to the Voronois based on the GPS located

lat/long of PPI data, the lat/long representing the centroid of

each DHS cluster, and the home tower of each income survey

respondent. Where multiple points from the same output

(WI, PPI and income) fell within the same polygon, we used

the mean aggregated value.

2.2. Poverty data
We used three geographically referenced datasets representing

asset, consumption and income-based measures of wellbeing

in Bangladesh (see the electronic supplementary material,

figure S1 and section A.1). These data were obtained from

three sources: the 2011 Bangladesh DHS, the 2014 FII survey

[44] with data collected on the PPI (www.progressoutofpov

erty.org) and national household surveys conducted by Telenor

Group subsidiary Grameenphone (GP) between November

2013 and March 2014 collecting household income data.
The DHS WI is constructed by taking the first principal com-

ponent of a basket of household assets and housing characteristics

such as floor type and ceiling material, which explains the largest

percentage of the total variance, adjusting for differences in urban

and rural strata [45]. A final composite combined score is then

used as a WI whereby each household is assigned its correspon-

dent quintile in the distribution and each individual belonging to

the same household shares the same WI score. A higher score

implies higher socioeconomic status (range¼ 21.45 to 3.5). Here,

we used aggregated average WI scores per primary sampling

unit (PSU) for 600 PSUs (207 in urban areas and 393 in rural

areas) to estimate the mean WI of sampled populations residing

in each Voronoi polygon.

The PPI is a measurement tool built from the answers to 10

questions about a household’s characteristics and asset owner-

ship, scored to compute the likelihood the household is living

above or below a poverty line. In Bangladesh, these poverty score-

card questions were determined using data from the 2010

Household Income and Expenditure Survey (HIES) [42,46], and

used in a nationally representative survey of 6000 Bangladeshi

adults undertaken in 2014 [44]. Together with basic demographics

and access to financial services information, the 10 questions

http://www.progressoutofpoverty.org
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needed to construct the PPI were collected. These data were used

to assign a poverty measure to each individual interviewed: the

likelihood they have per capita expenditure above or below a pov-

erty line. Here, we estimate the mean likelihood (range¼ 12.3–

99.7%) of populations residing in each Voronoi polygon to be

below the $2.50 a day poverty line.

Income data were obtained from two independent, sequential

household surveys run by GP. For each survey, face-to-face

interviews were conducted with 90 000 individuals, and their

corresponding household income was collected, together with

basic demographic information for each survey participant

(e.g. gender, age, profession, education) and phone usage. Respon-

dents were directly asked about income and were requested

to place themselves within pre-set income bins. Among GP

subscribers, CDRs were successfully linked to phone numbers

for 76 000 participants. Here we converted income bins to USD

(range ¼ 0–1285$) and modelled the average USD for each

Voronoi polygon.

2.3. CDR and RS data
CDR features were generated from four months of mobile phone

metadata collected between November 2013 and March 2014. GP

subscribers consented to the use of their data for the analysis. GP,

the largest mobile network operator in Bangladesh, had 48

million customers at the time of the analysis, with a network cov-

ering 99% of the population and 90% of the land area [47]. CDR

features range from metrics such as basic phone usage, top-up

patterns, and social network to metrics of user mobility and

handset usage. These features are easily made available in data

warehouses and do not rely on complex algorithms. They

include various parameters of the corresponding distributions

such as weekly or monthly median, mean and variance (see

the electronic supplementary material).

We further identified, assembled and processed 25 raster and

vector datasets into a set of RS covariates for the whole of Ban-

gladesh at a 1 km spatial resolution. These data were obtained

from existing sources and produced ad hoc for this study to

include environmental and physical metrics likely to be associ-

ated with human welfare [31,33,48–50] such as vegetation

indices, night-time lights, climatic conditions, and distance

to roads or major urban areas. A full summary of assembled

covariates is provided in the electronic supplementary material.

2.4. Covariate selection
Prior to statistical analyses, all CDR and RS covariate data were

log transformed for normality. Bivariate Pearson’s correlations

were computed for each pair of covariates to assess multicolli-

nearity, and for high correlations (r . 0.70), we eliminated

covariates that were less generalizable outside Bangladesh.

For example, population data are widely available (e.g. www.

worldpop.org.uk/) but births data may not be; similarly,

volumes of calls could be computed and compared across

countries, but charges may be country-specific.

To identify the set of predictors most suitable for modelling

the WI, PPI, and income data, we employed a model selection

stage as is common in statistical modelling [51]. For this we

used non-spatial generalized linear models (glms), implemented

via the R glmulti package [52,53], to build every possible non-

redundant model for every combination of covariates. Models

were built on a randomly selected 80% of the data to guard

against overfitting. Models were chosen using Akaike’s infor-

mation criterion (AIC), which ranks models based on goodness

of fit and complexity, while penalizing deviance [52]. A full

IC-based approach such as this allows for multi-model inference.

Where multiple glms had near-identical AIC values, we selected

the model with the fewest number of covariates. For the CDR data

only, we used forward and backward stepwise selection ( p ¼ 0.05)
prior to model selection to reduce the initial CDR inputs from 150

to 30 or less. The covariate selection process was completed for all

three poverty measures for national, urban and rural strata, and

using RS-only, CDR-only and CDR–RS datasets (27 resulting

models). This allowed us to explore differences in factors related

to urban and rural poverty, as well as to explicitly compare the abil-

ity of RS-only, CDR-only and CDR–RS datasets to predict poverty

measures. The resulting models were then used in the hierarchical

Bayesian geostatistical approach (see the electronic supplementary

material, tables S2a–c).

2.5. Prediction mapping
Using the models selected by the previous step, we employed

hierarchical Bayesian geostatistical models (BGMs) to predict

the three poverty metrics at unsampled locations across the

population. We chose BGMs as they offer several advantages

for addressing the limitations and constraints associated with

modelling geolocated survey data. These include straight-

forwardly imputing missing data, allowing for the specification

of prior distributions in model parameters and spatial covari-

ance, and estimating uncertainty in the predictions as a

distribution around each estimate [54,55].

Additionally, we needed to account for spatial autocorrelation

in the data as they are aligned to the tower locations, which are

clustered across varying spatial scales (described in §2.1 and

figure 1). BGMs can achieve this through incorporating a spatially

varying random effect. Here, the Voronoi polygons themselves

form the neighbourhood structure for this spatial random effect,

and neighbours are defined within a scaled precision matrix [56].

The matrix represents the spatially explicit processes that may

affect poverty estimates. It is passed through a graph function

in the model which assumes the neighbour relations are connec-

ted [57], that is all adjacent polygons share a boundary. This

function accounts for the spatial covariance in the data by allowing

observations to have decreasing effects on predictions that are

further away.

Here, all BGMs were implemented using integrated nested

Laplace approximations (INLA) [58], which uses an approxi-

mation for inference and avoids the computational demands,

convergence issues and mixing problems sometimes encountered

by MCMC algorithms [59]. The model is fit using R-INLA, with the

Besag model for spatial effects specified inside the function [60,61].

In the Besag model, Gaussian Markov random fields (GMRFs) are

used as priors to model spatial dependency structures and unob-

served effects. GMRFs penalize local deviation from a constant

level based on the precision parameter t, where the hyperpriors

are loggamma distributed [56]. The hyperprior distribution

governs the smoothness of the field used to estimate spatial auto-

correlation [56]. The spatial random vector x ¼ (x1, . . . ,xn) is thus

defined as

xijxi,i = j,t � N 1

ni

X
i�j

xj,
1

nit

� �
,

where ni is the number of neighbours of node i, i � j indicates that

the two nodes i and j are neighbours. The precision parameter t is

represented as

u1 ¼ log t,

where the prior is defined on u1 [60]. The geostatistical models

defined for the WI, PPI and income data were applied to produce

predictions of the each poverty metric for each Voronoi polygon as

a posterior distribution with complete modelled uncertainty

around estimates. The posterior mean and standard deviation for

each polygon were then used to generate prediction maps with

associated uncertainty (figure 2 and electronic supplementary

material, figures S2–S6). Model performance was based on out-

of-sample validation statistics calculated on a 20% test subset of

data. Pearson product-moment correlation coefficient (r) (or

http://www.worldpop.org.uk/
http://www.worldpop.org.uk/
http://rsif.royalsocietypublishing.org/


DHS Wealth Index

0.1
2.2

–1.2
>75%
>45%

likelihood of being below $2.50 per day income (USD)

>90%

standard deviation standard deviationstandard deviation

5.0
3.9

7.7
10.6
0

34.8
0.25
0

0.6

205
443

–68.3

(a) (b)

(d) (e) ( f )

(c)

Figure 2. National level prediction maps for mean WI (a) with uncertainty (d ); mean probability of households being below $2.50/day (b) with uncertainty (e); and
mean USD income (c) with uncertainty ( f ). Maps were generated using call detail record features, remote sensing data and Bayesian geostatistical models. The maps
show the posterior mean and standard deviation from CDR – RS models for the WI and income data (a,c), and the RS model for the PPI (b). Red indicates poorer
areas in prediction maps, and higher error in uncertainty maps.
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Spearman’s rho (r) for n , 100), root-mean-square-error (RMSE),

mean absolute error (MAE) and the coefficient of determination

(r2) were calculated for all BGMs. Finally, because glms do not

incorporate prior information for model parameters, we ran each

model through INLA while excluding the random spatial effect

to obtain non-spatial Bayesian estimates and compare model fit

and performance due to the explicit spatial process.
3. Results
We find models employing a combination of CDR and RS data

generally provide an advantage over models based on either

data source alone. However, RS-only and some CDR-only

models performed nearly as well (table 1). While the combined

CDR–RS model performed well in both urban (r2 ¼ 0.78) and

rural (r2 ¼ 0.66) areas, and at the national level (r2 ¼ 0.76), the

performance of RS-only and CDR-only models was more

context-dependent. For example, PPI and income models did

not improve predictions in urban areas, but in rural areas

the RS-only models performed nearly as well for both indi-

cators. The fine spatial granularity of the resultant poverty
estimates can be shown in figure 2, which shows the predicted

distribution of poverty for all three measures. Spatially, the

models exhibit higher uncertainty where fewer data are

available, such as the peninsular areas surrounding Chittagong

in the southeast where mobile towers are sparse. We also

find that explicitly modelling the spatial covariance in the

data was critically important. This resulted in improved pre-

dictions, lower error and better measures of fit based on

cross-validation and the deviance information criteria (DIC),

a hierarchical modelling generalization of the AIC [62]

(electronic supplementary material, tables S3 and S4).

Separating estimation by urban and rural regions

further highlights the importance of different data in different

contexts (electronic supplementary material, tables S2a–c).

Night-time lights, transport time to the closest urban settle-

ment, and elevation were important nationally and in rural

models; climate variables were also important in rural areas.

Distances to roads and waterways were significant in urban

and rural strata. In general, the addition of CDR data did not

change the selection of RS covariates at any level. Top-up fea-

tures derived from recharge amounts and tower averages

http://rsif.royalsocietypublishing.org/


Table 1. Cross-validation statistics based on a random 20% test subset of
data for all Bayesian geostatistical models.

poverty metric model r2 RMSE

whole country

DHS WI CDR – RS 0.76 0.394

CDR 0.64 0.483

RS 0.74 0.413

PPI CDR – RS 0.25 57.907

CDR 0.23 58.562

RS 0.32 57.439

income CDR – RS 0.27 105.465

CDR 0.24 107.155

RS 0.22 108.682

urban

DHS WI CDR – RS 0.78 0.424

CDR 0.70 0.552

RS 0.71 0.433

PPI CDR – RS 0.00 60.128

CDR 0.03 60.935

RS 0.00 60.384

income CDR – RS 0.15 168.452

CDR 0.15 172.738

RS 0.05 176.705

rural

DHS WI CDR – RS 0.66 0.402

CDR 0.50 0.483

RS 0.62 0.427

PPI CDR – RS 0.18 57.397

CDR 0.17 57.991

RS 0.21 57.162

income CDR – RS 0.14 81.979

CDR 0.13 82.773

RS 0.23 76.527
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Figure 3. Out-of-sample observed versus predicted values for (a) DHS
WI using mobile phone and remote sensing data: r2 ¼ 0.76, n ¼ 117,
p , 0.001, RMSE ¼ 0.394; (b) progress out of Poverty Index using
remote sensing data: r2 ¼ 0.32, n ¼ 100, p , 0.001, RMSE ¼ 57.439;
and (c) income using mobile phone and remote sensing data: r2 ¼ 0.27,
n ¼ 1384, p , 0.001, RMSE ¼ 105.465.
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were significant in every model, affirming their importance in

poverty work. People predicted to be poorer top-up their

phones more frequently in small amounts. Per cent nocturnal

calls, and count and duration of SMS traffic were signifi-

cant nationally. Mobility and social network features were

important in all three strata. In urban areas, SMS traffic

was important, whereas multimedia messaging and video

attributes were key in rural areas.

Models were most successful at reconstructing the WI

to model poverty (r2 ¼ 0.76); consumption-based and

income-based poverty proved more elusive. WI models

have better fit, lower error and higher explained variance

based on out-of-sample validation (figure 3). Combined

CDR–RS data produced the best WI models and

lowest error (r2 (CDR–RS) ¼ 0.76, r2 (RS) ¼ 0.74, r2 (CDR)¼ 0.64;

RMSE (CDR– RS) ¼ 0.394, RMSE (RS) ¼ 0.413, RMSE (CDR)¼

0.483). However, for the PPI models, the best model predicting

the probability of falling below $2.50/day was the RS-only

model (figure 2b,e, r2 (RS)¼ 0.32; RMSE (RS)¼ 57.439). The
model discerns many urban areas but also predicts areas

with very low poverty likelihood and high uncertainty outside

urban areas, especially around Sylhet in the northeast. Income

predictions (figure 2c,f ) show greater variation across the

country, and the best national model was for combined

CDR–RS data (r2 (CDR– RS) ¼ 0.27, RMSE (CDR–RS) ¼ 105.465).

The resulting predictions line up well with existing

SAE estimates for Bangladesh, and with high-resolution

maps of slum areas in Dhaka. The urban CDR–

RS model has the highest explained variance for any model

(r2 (CDR – RS_urb) ¼ 0.78) and the urban CDR-only model out-

performs the national CDR-only model (r2 (CDR_urb) ¼ 0.70).

Precision and accuracy are slightly lower, but the improved

correlation highlights the advantage of using CDRs within

a diverse urban population. To explore this further, we com-

pared our WI predictions against a spatially explicit dataset

of slum areas in Dhaka [63] (figure 4). We find the mean pre-

dicted WI of slum and non-slum areas to be significantly

different, t615 ¼ 217.2, p , 0.001, predicting slum areas to

be poorer than non-slum areas.

http://rsif.royalsocietypublishing.org/
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To compare our method to previous poverty estimates at

administrative level 3 (upazila), we used the same method-

ology at the lower spatial resolution, using the upazila

boundaries to form the random spatial effect in the model,

and covariates from the best national level model for each pov-

erty measure. We find strong correlations (r ¼ 20.91 and

20.86 for the WI; 0.99 and 0.97 for the PPI; and 20.96 and

20.94 for income, respectively, p , 0.001 for all models)

between our upazila predictions and earlier estimates of pov-

erty derived from SAE techniques based on data from the

2010 Household Income and Expenditure (HIES) survey and

2011 census [64] (figure 5). The r-values reported for WI and

income are negative at administrative level 3 because as the

proportion of people below the poverty line as estimated by

Ahmed et al. decreases, the WI value and income in USD of

the sampled population increases. That is, people who are

wealthier as estimated by the WI and income data are also

less likely to live below the poverty line according to earlier

estimates. The geostatistical method presented here thus accu-

rately maps heterogeneities at small spatial scales while

correlating well with earlier coarser estimates. All remaining

WI, PPI and income prediction maps are provided in the

electronic supplementary material.
4. Discussion
This work represents the first attempt to build predictive maps

of poverty using a combination of CDR and RS data. The

results demonstrate that CDR-only and RS-only models per-

form comparably in their ability to map poverty indicators,

and that integrating these data sources provides improvement

in predictive power and lower error. These results are promis-

ing as the CDR data here produce accurate, high-resolution

estimates in urban areas not possible using RS data alone. As

such, CDRs potentially allow for estimation of wealth at

much finer granularity—including the neighbourhood or

even the household or individual—than the current generation
of RS technologies [36]. While CDRs are proprietary data, they

are increasingly used in research, and have formed the basis for

hundreds of published articles over the past few years [65].

They also provide significant advantages in temporal granular-

ity: CDRs update in real-time versus RS data, which update far

less frequently. Although in this study we have not used

dynamic validation data, it is a clear future application for

CDRs in real-time to better comprehend the dynamic nature

of poverty.

The higher accuracy of predictions for the asset-based

WI over other poverty metrics is presumably due to several

factors. The predictive power for assets has been shown

to be higher than for consumption [35] in addition to the

aforementioned issues of survey question wording and

response options [20,23]. Further, income and consumption

can vary hugely by day, week, and can be related to changes

in household size, job loss or gain, piecework or harvest out-

comes. Assets and housing characteristics are generally

considered more stable [20–22]. For the datasets used in

this study, WI data are based on clusters of households,

and this sampling strategy provides more robust estimates

and less variability than the individually based PPI and

income data. Greater success in predicting the WI is also

presumably due to the WI measuring a wider range of

living standard across the population. That is, the full range

of distribution from poorest to wealthiest in the population

is represented in these data. Alternatively, by considering a

streamlined 10 questions, the PPI is meant to identify

the poorest individuals in a population. Similarly, in the

income data, there were very few respondents in higher

income categories.

The higher error associated with CDR-only models is not

surprising considering the noise inherent in these data. CDR

features are derived from daily and weekly measurements

aggregated over short temporal intervals, while RS covariates

are generally comprised of long-term averages or compara-

tively less dynamic measures of location and access such as

roads or proximity to urban centres. Bearing this in mind,








