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Hundreds of millions of poor families receive some form of targeted
social assistance. Many of these anti-poverty programs involve
some degree of geographic targeting, where aid is prioritized to the
poorest regions of the country. However, in many low-resource set-
tings, policymakers lack the disaggregated poverty data required to
make effective geographic targeting decisions. Using several inde-
pendent datasets from Nigeria, this paper shows that high-resolution
poverty maps, constructed by applying machine learning algorithms
to satellite imagery and other non-traditional geospatial data, can im-
prove the targeting of government cash transfers to poor families.
Specifically, we find that geographic targeting relying on machine
learning-based poverty maps can reduce errors of exclusion and in-
clusion relative to geographic targeting based on recent nationally-
representative survey data. This result holds for anti-poverty pro-
grams that target both the poor and the extreme poor, and for ini-
tiatives of all sizes. We also find no evidence that machine-learning
based maps increase targeting disparities by demographic groups,
such as gender or religion. Based in part on these findings, the Gov-
ernment of Nigeria used this approach to geographically target emer-
gency cash transfers in response to the COVID-19 pandemic.
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Hundreds of millions of poor and vulnerable families benefit1

from some form of targeted social assistance (1). Just2

since the onset of the COVID-19 pandemic, over 3,300 new3

targeted social protection programs have been launched (1).4

A key factor in the success of any anti-poverty program is5

the degree to which it is accurately targeted (2). When truly6

poor families don’t receive benefits (errors of exclusion), or7

when non-poor families do receive benefits (errors of inclusion),8

this undermines the effectiveness of the policy (3).9

Unfortunately, many governments in low- and middle-10

income countries (LMICs) lack recent, reliable data on where11

poverty is, and where it isn’t (4). While most LMICs have12

access to poverty data that provides comprehensive coverage13

at the largest administrative subdivision (e.g., the state level in14

Nigeria, comparable to the state level in the USA), coverage is15

far less complete at the third administrative subdivision (e.g.,16

the ward level in Nigeria, comparable to municipalities in the17

USA). In Nigeria, the most recent Demographic and Health18

Survey (DHS) reaches households in only 13.8% of wards. This19

problem is present across LMICs: in Peru, for example, 32.0%20

of the comparable administrative units are covered, and in21

Indonesia just 16.1%. In practice, this incomplete coverage22

means that a geographically targeted program must either23

rely on potentially inaccurate and outdated poverty maps, or24

accept the efficiency losses of targeting larger administrative25

units.26

In this paper, we ask the question, Can fine-grained poverty27

maps, produced by applying deep learning algorithms to high-28

resolution satellite imagery, improve the accuracy of geographi- 29

cally targeted anti-poverty programs? Our results are based on 30

analysis done in a high-stakes policy environment, to help the 31

Government of Nigeria determine its emergency COVID-19 32

response strategy. 33

Our main results evaluate different geographic targeting 34

mechanisms available to the Nigerian government, which are 35

shared by many policymakers in LMICs. Specifically, we 36

compare the targeting outcomes that would result from using 37

high-resolution machine learning (ML)-based poverty maps 38

to those that would result from using a recent nationally 39

representative household survey (which we refer to as the 40

survey-based “benchmark”). Both approaches are evaluated 41

using a nationally-representative survey of 22,104 Nigerian 42

households; this evaluation data was independently collected 43

and not used to train the ML-based approach or to guide the 44

survey-based benchmark. 45

We find that the ML-based poverty maps are at least as 46

accurate as the benchmark in targeting benefits to the poor 47

(i.e., those with consumption below the poverty line) and to 48

the extreme poor (consumption below half the poverty line), 49

in regions where benchmark data are available. We also doc- 50

ument the main advantage of the ML-based maps, which is 51

that they allow for accurate micro-targeting in all administra- 52

tive subdivisions of the country—including subdivisions where 53

benchmark data do not exist. This is important, because the 54

survey benchmark does not contain data for 86.2% of Nigerian 55

Wards (the Admin-3 unit) and 18.5% of Local Government 56

Areas (the Admin-2 unit). We document how the accuracy 57

and complete coverage of the ML-based maps make it possible 58

to design a more disaggregated geographic targeting policy 59

than would be possible with survey data alone. This disaggre- 60

gation directly translates to a higher fraction of benefits being 61

allocated to the poor and extreme poor. 62

Significance Statement

Many anti-poverty programs use geographic targeting to priori-
tize benefits to people living in specific locations. This paper
shows that high-resolution poverty maps, constructing with ma-
chine learning algorithms, can improve the geographic targeting
of benefits to the poorest members of society. This approach
was used by the Nigerian government to distribute benefits to
millions of extreme poor. Since high-resolution poverty maps
are now globally available, these results can inform the design
and implementation of social assistance programs worldwide.
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Fig. 1. Targeting performance of policies at different administrative units

Notes: ROC curves show the performance of geographic targeting
policies designed at the state (admin-1), LGA (admin-2), and ward
(admin-3) level, where all households in a targeted administrative unit
receive full benefits and households in untargeted units receive no
benefits. The targeting of an administrative unit is determined based on
the average wealth of the unit, as calculated from the NLSS survey data.
Accuracy is calculated based on the portion of true poor households who
are targeted, where poverty status is determined based on the NLSS.

In addition, we assess the fairness of ML-based targeting63

with respect to several different demographic subgroups. This64

is to address the concern that targeting approaches that are65

agnostic to recipients’ demographics may over- or under-target66

certain groups (e.g., female versus male heads of household)67

(5, 6). Comparing the demographic parity of ML-based and68

survey-based targeting approaches along several dimensions,69

and find that ML-based targeting does not decrease fairness70

overall.71

These results build on prior work that develops methods72

for the construction of high-resolution poverty maps (7–9).73

However, our focus is different, and more practical. We take74

the output of prior work (the high-resolution poverty maps)75

as the input to our analysis, and show how such maps can76

improve the outcomes of a real-world social assistance program.77

In January 2021, the Nigerian government chose this approach78

to guide the expansion of cash transfers to the urban poor79

(10); our hope is that this analysis can help encourage future80

efforts to integrate recent innovations in machine learning into81

humanitarian relief applications.82

Results83

Benefits of Disaggregation. Our first intuitive result highlights84

the value of geographic disaggregation in the design of geo-85

graphic targeting policies. This analysis is shown in Figure 1,86

where we compare targeting performance at different aggrega-87

tion levels using hypothetical optimal targeting data. Optimal88

targeting is simulated by using the same survey data to both89

perform and evaluate targeting. This allows us to approxi-90

mate how effectively targeting can be conducted when the91

true underlying distribution of poverty is known. However, it92

is important to note that this is a hypothetical exercise: no93

dataset exists that would allow optimal targeting in practice.94

The left panel of Figure 1 displays the ROC curves where95

the objective is to provide benefits to the poor (daily consump-96

tion below $1.05); the right panel provides the ROC curves for97

the objective of targeting the extreme poor (daily consumption98

below $0.57). Substantial increases in area under the curve are99

produced as the targeting policy shifts from states (the largest100

administrative unit) to LGAs (the intermediate administrative101

unit), and from LGAs to wards (the smallest administrative 102

unit). These findings are consistent with work done in other 103

contexts to document the benefits of spatial disaggregation in 104

geographic targeting (11–13): intuitively, programs targeting 105

smaller administrative units are able to more precisely direct 106

benefits to the poorest regions than programs targeting larger 107

ones. 108

Coverage and Accuracy of ML-Based Poverty Maps. Our sec- 109

ond set of results contrasts the coverage of ML-based poverty 110

maps with survey-based alternatives, and compares the accu- 111

racy of these two approaches at different spatial scales. 112

The difference in coverage between survey- and ML-based 113

poverty maps is evident in Panel A of Figure 2, which shows 114

the two versions of Nigerian poverty maps side-by-side, at 115

different levels of geographic aggregation. Grey areas indi- 116

cate administrative units where no surveys occurred in the 117

benchmark dataset, a nationally-representative DHS house- 118

hold survey of 40,427 households, conducted in 2018. At the 119

state level (Row A), both maps have complete coverage; how- 120

ever, at the LGA level (Row B), the survey-based map loses 121

18.5% of LGAs, and at the finest level (Row C), surveys cover 122

only 13.8% of all wards in Nigeria. A full tabulation of these 123

results are also shown in the first two columns of Table 1. 124

The better coverage of ML-based poverty maps does not 125

come at the expense of accuracy. Rather, we find that the 126

ML-based poverty maps measure the spatial distribution of 127

poverty with approximately the same accuracy as the bench- 128

mark survey. This can be seen in Panel B of Figure 2, which 129

measures the accuracy of survey-based and ML-based poverty 130

maps using a third, independent source of ground truth data, 131

Nigeria’s National Living Standards Survey (NLSS) of 22,110 132

households, conducted in 2018-2019. At all levels of spatial 133

disaggregation, the correlation with NLSS is similar. Note that 134

we do not expect the ML-based estimates to outperform the 135

DHS-based estimates, since the DHS data were used to train 136

the ML-based model (see Materials and Methods, Section C.1). 137

Rather, the main advantage of the ML-based maps is that 138

they allow accurate extrapolation of wealth estimates into the 139

large number of regions not surveyed by the DHS. 140

We further find that correlations with ground truth for 141

both DHS and ML-based poverty maps increase when we 142

consider only the regions where the evaluation (NLSS) data 143

are most reliable. (This analysis is intended to address one 144

limitation of our empirical setting, noted in Materials and 145

Methods, Section E, which is that the ground truth (NLSS) 146

data used to evaluate performance are incomplete). These 147

results are shown in the last two columns of Table 1, which 148

reports the correlation between the two poverty maps with 149

ground truth estimates from the NLSS. While rows 1, 2, and 150

6 echo the results shown in Figure 2B, the other rows indicate 151

the correlation in specific subsets of the administrative units. 152

In particular, we find that the performance of models evaluated 153

using all of the LGA data (Row 2) is inferior to that of models 154

using only data from LGAs with at least 30 households in the 155

NLSS data (Row 3). This effect is even stronger in Panel C, 156

when we compare the analysis of all wards (Row 6) to that of 157

wards with at least 20 households (Row 7). As expected, both 158

DHS and ML-based poverty maps are more strongly correlated 159

with the NLSS validation data when regions with the fewest 160

households surveyed are excluded. 161

Perhaps most important, we find that the ML-based esti- 162
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Fig. 2. Coverage and correlations of ML and benchmark poverty maps to NLSS-estimated ground truth poverty maps

Notes: Panel A compares the coverage and estimates of traditional survey-based poverty maps (left column) and ML-based poverty maps (right
column) at the three different administrative levels: State (A), Local Government Area (B), and Ward (C). Regions without data shown in gray.
Bottom figure (D) shows the high-resolution ML-based estimates, prior to aggregation. For privacy reasons, high-resolution poverty estimates are
not generated for grid cells with fewer than 10 inhabitants. Panel B compares the ML and survey benchmark (DHS) wealth estimates of each
administrative unit against the NLSS ground truth estimate of that unit’s wealth. Pearson’s correlation coefficients reported across all relevant
units. Fewer observations exist in Panel B because not all LGAs and wards contain households that were surveyed in the DHS.

mates remain accurate even when evaluated in regions where163

no DHS surveys occurred. The accuracy of ML-based esti-164

mates in regions not covered by the DHS (but present in the165

NLSS ground truth and ML-based estimates) can be seen in166

rows 4-5 and 8-9 of Table 1. For instance, comparing rows167

6 and 8, we see that the correlation between the ML-based168

estimates and ground truth is very similar (0.77 vs. 0.76).169

There is a slight attenuation in accuracy at the LGA level170

(row 2 vs. row 4), but this is also likely due to the fact that the171

NLSS validation data is sparser in regions with no DHS data.172

Thus, we re-calculate these correlations removing regions with173

little NLSS data (rows 5 and 9); the gap in accuracy at the174

LGA level shrinks (row 3 vs. row 5) and disappears at the175

ward level (row 7 vs. row 9). Overall, there is little evidence176

that the performance of ML-based maps deteriorates in regions177

where training data was unavailable.178

Results of National Targeting Simulations. The third set of re-179

sults, which are likely the ones most relevant to policymakers,180

compare targeting outcomes using the ML-based wealth esti- 181

mates to targeting outcomes using survey benchmark wealth 182

estimates. The analysis is based on simulations of ward-level 183

geographic targeting, where all households in selected wards 184

receive an equal benefit, and no households in unselected 185

wards receive benefits. The data and methods used to con- 186

struct poverty maps from the ML-based and survey-based data 187

sources are described in Materials and Methods, Section C. 188

The details of the targeting simulations used to evaluate both 189

methods are provided in Materials and Methods, Section D. 190

To summarize the main finding: using a variety of different 191

methods for evaluating targeting performance, we find that the 192

ML-based poverty maps would deliver a higher proportion of 193

benefits to the poorest people in Nigeria than the survey-based 194

benchmark. This is true whether the goal of targeting is to 195

provide benefits to the poor (defined as those consuming less 196

than US $1.05 per day) or the extreme poor (consuming less 197

than US $0.57 per day). 198

The ROC curves in Figure 3 Panel A compare ward-level 199
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Number of Regions Correlation with Ground Truth
with Estimates Truth Estimates

DHS ML-Based DHS ML-Based

Panel A: State-level correlations
1. All states 37 37 0.935 0.931

Panel B: LGA-level correlations
2. All LGAs 597 706 0.787 0.802
3. > 30 ground truth households 300 371 0.839 0.863
4. LGAs with no DHS data 109 0.713
5. > 30 ground truth households and no DHS 38 0.812

Panel C: Ward-level correlations
6. All wards 464 2016 0.779 0.769
7. > 20 ground truth households 95 242 0.894 0.870
8. Wards with no DHS data 1552 0.759
9. > 20 ground truth households and no DHS 147 0.871

Table 1. Coverage and accuracy of different approaches to constructing poverty maps in Nigeria.

Notes: First two columns indicate the number of administrative units for which data exist in the 2019 NLSS ground truth and the
2018 DHS survey (column 1) or the ML-based estimates (column 2). Last two columns indicate the Pearson correlation between
wealth estimates generated from the ground truth (NLSS) and the DHS survey (column 3) or ML-based estimates (column 4).
Correlations are measured across administrative units (i.e., not across households), using NLSS household weights for aggregation
at the state level but not at the LGA or Ward level. The three panels indicate different levels of spatial of aggregation of wealth
estimates. Rows 3, 5, 7, and 9 restrict analysis to administrative units where the NLSS ground truth contains a minimum of 20-30
households (to remove high variance observations from the ground truth estimate). Rows 4, 5, 8, and 9 evaluate the ML-based
estimates on the subset of administrative units where no DHS data exist.

geographic targeting performance using the ML-based maps200

(AUC=0.87) to ward-level performance using the survey bench-201

mark (AUC=0.81). We also include, for reference, the perfor-202

mance of an “oracle” strategy (AUC=0.93), which indicates203

the optimal performance that could be achieved with a purely204

geographic targeting approach. The survey benchmark shown205

in Figure 3 interpolates wealth estimates into missing wards206

(see Materials and Methods, Section E) to ensure that every207

ward has a non-zero probability of receiving benefits. In re-208

sults not shown in the figure, we measure the performance of a209

survey-based approach that is evaluated only in the 13.8% of210

wards with DHS data (AUC=0.87). This approach performs211

similarly to the ML-based approach, but could not be feasibly212

implemented because it would leave 86.2% of wards ineligi-213

ble for benefits. Our findings are similar when we evaluate214

targeting based on the proportion of transfers reaching the215

extreme poor rather than the poor: ward-level targeting using216

the ML-based estimates (AUC=0.86) improves on the survey217

benchmark (AUC=0.80), and performs as well as the DHS218

when the DHS is only evaluated in the 13.8% of DHS wards219

(AUC=0.86, not shown).220

We find that ML-based maps can improve upon the survey-221

based benchmark for anti-poverty programs of all sizes. Fig-222

ure 3 Panel B shows the fraction of transfers going to the poor223

and extreme poor as the number of beneficiaries increases. We224

measure program size as a fraction of the total number of poor225

in Nigeria (currently estimated at 73.5 million). In the left226

subfigure, the ML-based map performs better than the bench-227

mark irrespective of the size of the program. On the right228

subfigure, the ML-based map outperforms the benchmark for229

all extreme-poverty program sizes except those targeting a230

population of between 11.8 and 25.7 million people.231

To more concretely illustrate how the improvements in tar-232

geting accuracy from using the ML-based maps translate into233

better policy outcomes, Table 2 shows targeting precision at234

Fig. 3. Ward-level targeting performance
Notes: Three different datasets are used to identify the poorest wards;
all residents of the selected wards are then targeted. Panel A shows
ROC curves based on whether the NLSS households in targeted wards
are poor (left) or extreme poor (right). Panel B shows the fraction of
program benefits going to the poor (left panel) and extreme poor (right
panel) as the size of the anti-poverty program varies.
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Precision at 10% Recall
Targeting Approach Targeting the Poor Targeting the Extreme Poor Coverage

Panel A: States
Optimal (NLSS) 0.806 0.277 100%
ML-Based 0.682 0.118 100%
DHS-Based 0.795 0.218 100%

Panel B: LGAs
Optimal (NLSS) 0.979 0.553 91.2%
ML-Based 0.855 0.390 100%
DHS-Based 0.824 0.301 100%
DHS Upper Bound 0.840 0.359 81.5%

Panel C: Wards
Optimal (NLSS) 1.000 0.976 22.9%
ML-Based 0.919 0.406 100%
DHS-Based 0.793 0.311 100%
DHS Upper Bound 0.923 0.376 13.8%

Table 2. Precision at 10% recall

Notes: First two columns indicate the fraction of transfers going to poor (extreme poor) individuals when the program budget allows for 10%
of the poor (extreme poor) to be targeted. Third column indicates the proportion of each administrative unit for which the relevant dataset
provides estimates (e.g., the NLSS conducted surveys in 91.2% of LGAs and 22.9% of wards). Optimal (NLSS) targeting uses the ground truth
data to select the poorest administrative units for benefits. ML-based targeting selects units based on the average estimated wealth of those units.
DHS-based targeting selects units based on the average wealth of DHS households in that unit, or an interpolated wealth estimate. DHS Upper
Bound evaluates targeting performance only in units where DHS surveys occur.

10% recall — i.e., the fraction of transfers that reach the poor235

when 10% of the poor are targeted. In this Table, we observe236

a similar pattern as was shown in Figure 1: that targeting per-237

formance generally increases as smaller administrative units238

are targeted (i.e., when results in Panel A are compared to239

Panel B, and when Panel B is compared to Panel C).∗240

Most important, we find that the ML-based approach out-241

performs the benchmark at all levels of geographic targeting242

except the state level (which would not be a viable approach243

to geographic targeting in Nigeria, given how large each state244

is). In targeting the poor, the ML-based approach increases245

precision relative to the benchmark from 0.82 to 0.86 at the246

LGA level and from 0.79 to 0.92 at the ward level. In targeting247

the extreme poor, the increase is from 0.30 to 0.39 at the LGA248

level and from 0.31 to 0.41 at the ward level.249

We also include an upper bound performance estimate for250

DHS, which evaluates targeting performance only in the 81.5%251

of LGAs and 13.8% of wards covered by DHS. ML-based252

poverty maps outperform this upper bound on DHS maps253

at the LGA level and for targeting the extreme poor at the254

ward level; the upper bound DHS performs slightly better for255

targeting the poor at the ward level (precision of 0.923 vs.256

0.919). While this accuracy could not be attained with DHS257

in practice because so many regions lack data, these findings258

illustrate that the targeting performance of ML-based maps is259

comparable even to best-case DHS performance.260

These increases in precision directly translate into reduc-261

tions in errors of exclusion and inclusion. For instance, if we262

compare two geographically-targeted anti-poverty programs263

that each provide transfers to 7.3 million individuals (i.e., 10%264

of Nigeria’s poor population), the best ML-based approach265

∗Note that while targeting performance increases with spatial disaggregation in Table 2, we earlier
saw in Table 1 that the correlation between the NLSS ground truth and both the ML-based and
DHS-based poverty maps decreased with spatial disaggregation. This illustrates a bias-variance
tradeoff, where the smaller units of analysis imply fewer households are available to calculate the
average wealth.

(ward-level targeting) would correctly target 6,750,920 indi- 266

viduals; 66,735,620 poor individuals would not receive trans- 267

fers and 597,734 non-poor individuals would be incorrectly 268

included. DHS-based ward-level targeting would correctly 269

target 5,787,802 individuals; 67,698,738 would be incorrectly 270

excluded and 1,560,852 would be incorrectly included. In 271

other words, the ML-based approach would reduce exclusion 272

errors by 1.4% and would reduce inclusion errors by 61.7%, 273

resulting in nearly a million poor individuals receiving aid who 274

otherwise would not have.† 275

Our finding that ML-based targeting outperforms the sur- 276

vey benchmark is robust to several alternative approaches to 277

targeting. Thus far, performance has been evaluated based on 278

a method’s ability to target regions with low average (mean) 279

wealth. When targeting is instead conducted based on median 280

wealth, ML-based maps improve AUC over survey-based maps 281

from 0.808 to 0.863 for targeting the poor, and from 0.803 to 282

0.854 for targeting the extreme poor. Similar performance is 283

observed for targeting based on the fraction of households in 284

the ward that are (extreme) poor: AUC for ML-based maps 285

is 0.861 for targeting the poor versus 0.802 for survey-based 286

maps, and 0.835 versus 0.774 for targeting the extreme poor. 287

See Appendix for full ROC plots. 288

Targeting Fairness and Demographic Parity. Our final set of re- 289

sults explore the extent to which different targeting approaches 290

lead to a “fair” distribution of resources, where fairness is as- 291

sessed based on statistical parity. This is motivated by the fact 292

†The analysis in Table 2 is based on wards where both DHS and NLSS surveys contain at least
one household (#=464). There are also a large number of wards for which DHS does not contain
data but NLSS does (#=1,552). In these regions, it is possible to evaluate ML-based targeting
performance but not the survey-based benchmark. We focus on wards where all data are available
to facilitate direct comparisons between the DHS and ML model. In analysis not reported in Table 2,
we find that the targeting accuracy of the ML-based approach is largely unchanged when evaluatd
on the full set of 1,552 wards with NLSS data. For targeting the poor, AUC remains virtually
unchanged (0.867, versus 0.869 for DHS wards only). For targeting the extreme poor, we observe
a slightly larger decline (to 0.82 from 0.86). Precision at 10% recall is unchanged at 0.92 for
targeting the poor, and declines slightly from 0.41 to 0.39 for targeting the extreme poor.
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DRAFT
Fig. 4. Comparison of targeting fairness for selected demographic groups (assigned based on head of household)

Notes: Under perfect individual targeting, the fraction of transfers going to members of a demographic group would be equal to the fraction of
total poor households belonging to that demographic group. Panel A shows the percentage difference between the number of households in each
demographic group expected to receive transfers and the number that actually receive transfers, when 10% of the population is targeted. Error
bars show bootstrapped 95% confidence intervals. Panel B show how the fraction of transfers going to sample subgroups vary as a function of
program size, as a fraction of total population. Results pictured are for ward-level targeting.

that a singular focus on the accuracy of targeting (at reaching293

the poor) might inadvertently concentrate benefits toward (or294

away from) specific, potentially marginalized or underserved,295

subgroups of the population (5, 14–16). We note three results.296

First, geographic targeting can create demographic dispar-297

ities – likely due to the fact that different subgroups of the298

population concentrate in specific geographic areas. These299

results can be seen in Figure 4 Panel A, which quantifies the300

difference in the percentage of households of a certain group301

that are expected to receive transfers (based on the percent of302

that group that are truly poor) and the percentage of house-303

holds of that group that do receive transfers according to a304

specific targeting method. In the figure, a large number of305

demographic sub-groups (sets of bars) are statistically over-306

or under-targeted irrespective of the targeting methodology307

(indicated by bar color). For instance, even under optimal308

geographic targeting, Hausa speakers (40.0% of Nigerians per309

NLSS estimates) are over-targeted and Igbo speakers (11.2% of310

Nigerians) are under-targeted. We also note significant under-311

targeting of female-headed households across all targeting312

strategies.313

Second, spatial disaggregation has no clear effect on statis-314

tical disparities. With religion, we find that targeting smaller315

spatial units (i.e., wards) is marginally less disparate than316

targeting larger spatial units (i.e., LGAs). However, the op-317

posite result appears when considering the age of the head of318

household. However, across all of these cases, the confidence319

intervals (indicated by the whiskers) overlap. Thus, the overall320

impact of disaggregation may depend on the patterns of spatial321

heterogeneity in the specific regions under consideration.322

Third, and perhaps most relevant to the focus of this pa-323

per, we find that ML-based targeting leads to disparities that324

are similar in magnitude and direction as the survey-based325

benchmark. In Figure 4 Panel A, we see that 95% confidence326

intervals for ML- and survey-based targeting overlap signifi-327

cantly for all demographic groups. In Panel B, we see similar 328

results when the number of people targeted varies. While 329

parity varies slightly for different program sizes, no systematic 330

differences between targeting approaches are apparent. 331

Discussion 332

This paper provides empirical evidence that recent advances in 333

machine learning can improve the geographic targeting of social 334

assistance. Our analysis, done to support the Government of 335

Nigeria’s humanitarian response to the ongoing COVID-19 336

crisis, indicates that programs targeted using ML-based maps 337

direct more transfers to the poorest households than programs 338

targeted using survey-based poverty maps. This improvement 339

in targeting efficiency is due to the fact that the ML-based 340

maps provide accurate estimates of the relative wealth of every 341

administrative subdivision of the country, whereas survey data 342

typically only cover a small fraction of all units; as a result, 343

an ML-based approach can be designed for smaller regions 344

while a survey-based approach can only be designed for larger 345

regions. We also do not find evidence that ML-based poverty 346

maps increase disparities between demographic groups in the 347

Nigerian context. 348

While promising, we caution that these results should not 349

be misconstrued to suggest that ML-based approaches should 350

replace survey-based methods for measuring poverty. Indeed, 351

the ML-based approach was only feasible because high-quality 352

survey data existed to train the ML model. More broadly, 353

household surveys capture a wide range of information, with 354

much greater nuance, than can be clearly seen in overhead 355

imagery, and which may not be easily modeled with machine 356

learning (17, 18). Rather, these results suggest that the ML- 357

based maps can provide a reliable method for geographic 358

targeting when time and resource constraints prevent bespoke 359

data collection – a frequent consideration in the large number 360

of LMICs without a recent census or comprehensive social 361

6 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Smythe et al.

www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

registry.362

Materials and Methods363

A. Related Work. This paper connects a recent strand of the applied364

machine learning (ML) literature to a rich literature in develop-365

ment economics. The most closely related ML papers explore how366

ML algorithms can be used to construct estimates of the spatial367

distribution of wealth and poverty from high-resolution satellite im-368

agery (7–9, 18–22). Also related are papers that construct granular369

poverty maps from mobile phone (5, 23, 24) and social media data370

(25), and recent work on evaluating fairness in machine learning-371

based targeting approaches (5, 6). Broadly speaking, these studies372

match non-traditional data (such as satellite or phone data) to a373

survey-based ground truth measure of wealth; train machine learn-374

ing methods to predict wealth from the non-traditional data; and375

use the trained model to predict wealth estimates in regions where376

no ground truth data exists (26).377

The second literature, which has a rich history in development378

economics, studies the targeting of social assistance and government379

transfers. This body of work provides theory and empirical evalua-380

tions of the different targeting mechanisms that are commonly used381

to determine eligibility for benefits (2, 3). The crux of the problem is382

that central governments often lack recent, reliable, and comprehen-383

sive data on the living conditions of each family (4). Thus, a variety384

of common targeting mechanisms exist to help direct benefits to the385

neediest households: self-targeting, where benefits are available to386

anyone, but there is some “ordeal” involved in registering such that387

only those with the greatest need will choose to participate (27, 28);388

proxy means tests (PMT), where wealth is estimated based on a389

small number of easily observed assets and housing characteristics390

(29, 30); community-based targeting (CBT), where communities are391

asked to identify their neediest members (31, 32); and geographic392

targeting, where resources are channeled to the regions with the393

highest levels of poverty (33–35). A key result from this literature,394

which we extend in this paper, is that significant efficiency gains395

can be achieved by targeting small administrative units rather than396

larger ones (11–13).397

This paper connects these two historically disjoint literatures by398

examining whether novel ML-based poverty maps can improve the399

targeting of social assistance and humanitarian aid. We build on400

prior work by Yeh et al. (8), who discuss the potential for ML-based401

maps in program targeting, but stop short of analyzing a real-world402

policy decision and do not compare the ML approach to status403

quo alternatives. We also build on Aiken et al. (36), who show404

how mobile phone metadata can improve targeting outcomes in405

Afghanistan. Relative to (36), our approach is likely most relevant406

in contexts where mobile phone data is not publicly available, or407

when policy applications require a geographic approach to targeting.408

B. Targeting Context: Nigeria. Our analysis was motivated by a spe-409

cific request for assistance from the Government of Nigeria, who410

was working with the World Bank to design an emergency social411

assistance program in response to the COVID-19 crisis. At the onset412

of COVID-19, there was no single, comprehensive social registry413

that would allow them to identify the individuals or households with414

the greatest need for assistance – and in the middle of the pandemic,415

it was impractical to go door to door to collect this information.416

Thus, they were interested in evaluating different approaches to417

geographic targeting.418

Nigeria is home to roughly 211 million people, making it the419

seventh most populous country in the world. Geographically, Nige-420

ria has three different levels of administrative subdivisions (see421

Figure 2): 37 states (Admin-1), which are subdivided into a total422

of 774 local government areas (LGAs, Admin-2), which in turn are423

subdivided into a total of 8808 wards (Admin-3). However, in early424

2020, the best poverty data available to the Government of Nigeria425

could only provide estimates of state-level poverty; it did not allow426

for estimates of rates of poverty at the LGA or ward level.427

Based in part on the analysis described in this paper, the Gov-428

ernment elected to use our high-resolution poverty maps to target429

the COVID-19 Rapid Response Registration (RRR) Cash Transfer430

Project, which began disbursing benefits to the first of an eventual431

one million recipients in mid-January 2021 (10). The RRR program 432

is designed specifically to help the urban poor; see Appendix for 433

separate evaluation of targeting outcomes for urban areas only. 434

C. Primary Data Sources and Poverty Map Construction. 435

C.1. ML-Based Poverty Maps. The high-resolution poverty maps 436

shown in Figure 2 Panel A Row D are constructed using a ma- 437

chine learning approach described in greater detail in Chi et al.(9), 438

which follows an approach similar to that first proposed by Jean 439

et al. (7). To summarize: we start with ground truth survey data 440

from Nigeria’s 2018 DHS (see next section for details), which pro- 441

vides information on the wealth of 40,427 households across Nigeria. 442

These “labels” are matched, using geographic markers in the survey 443

dataset, to a rich set of non-traditional geospatial data, including 444

features derived from high-resolution satellite imagery using a con- 445

volutional neural net, as well as mobile connectivity data and other 446

topological data. We use a gradient boosted decision tree to predict 447

the labels from the satellite and other geospatial features, using 448

spatially-stratified cross validation. The fitted model is then used 449

to predict the wealth of every 2.4km gridded region in the country 450

of Nigeria. 451

To produce estimates of the wealth and poverty of the different 452

administrative units of Nigeria (right column of Figure 2 Panel 453

A, A-C), the 2.4km estimates are aggregated using population 454

weights, where the population of each 2.4km grid cell is generated 455

using population estimates from Humanitarian Data Exchange (37). 456

Specifically, the wealth estimate of administrative unit 8 is calculated 457

as: 458

,8 =

(
1∑

C∈) � (C , 8) ?C

) ∑
C∈)

� (C , 8) ?CFC [1] 459

Where ) is the set of all 2.4km satellite tiles, ? and F approximate 460

the population and wealth of tile C, and � gives the fraction of tile 461

C that intersects administrative unit 8. Because wealth indices are 462

relative and have no meaningful units, they are normalized at each 463

administrative level to have a mean of zero and standard deviation 464

of one. 465

C.2. “Benchmark” Poverty Maps, from DHS Survey. As a benchmark 466

against which we compare the targeting outcomes of the ML-based 467

maps, we construct a set of poverty maps using data from a re- 468

cent, nationally-representative household survey. Specifically, we 469

obtain the micro-data from Nigeria’s 2018 DHS (38). The DHS 470

is a standardized household survey funded by the U.S. Agency 471

for International Development; the 2018 Nigerian DHS conducted 472

surveys with 40,427 households in 1,360 unique locations across 473

the country. The survey instrument contains detailed questions 474

about the socioeconomic conditions of each household, including 475

a wealth index, which provides a scalar measure of the wealth of 476

that household, relative to all other surveyed households.‡ We also 477

observe the approximate location of each DHS household, where the 478

DHS groups households into clusters (roughly equivalent to villages 479

in rural areas and neighborhoods in urban areas) and provides 480

the geocoordinates of the centroid the cluster of households, after 481

adding up to 5km of jitter to preserve the privacy of individual 482

households. 483

To construct poverty maps from the household survey data (as 484

shown in the left column of Figure 2, Panel A), we calculate the 485

average wealth index of all surveyed households located in the 486

relevant the administrative unit. For this process, we obtained 487

shapefiles and urban/rural classifications for each administrative 488

unit from the World Bank. Both the NLSS and DHS surveys were 489

designed to provide estimates of population characteristics that 490

are representative at the state level, and each household has an 491

associated survey sampling weight. Thus, for the state-level poverty 492

maps, we use this sampling weight to calculate the weighted average 493

wealth index of all households in the state. When constructing 494

estimates of the wealth of the LGA and ward, we take the simple 495

average of all households in the relevant administrative unit, since 496

‡The wealth index is construct as the first principal component of a vector of assets and household
characteristics: air conditioner, animal-drawn cart, bank account, bed, bicycle, boat with a motor,
canoe, car or truck, chair, computer, cupboard, electric iron, electricity, fan, generator, landline,
motorbike, main floor material, main roof material, main wall material, mobile telephone, motorcycle
or scooter, number of members per sleeping room, owns a house, owns land, radio, refrigerator,
sofa, source of drinking water, table, television, type of toilet facility, type of cooking fuel, and watch.
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the household survey weights were not intended to provide LGA-497

or Ward-representative inferences.498

C.3. Ground Truth Evaluation Data, from NLSS. To evaluate the per-499

formance of targeting using the ML-based poverty maps and the500

survey-based poverty maps, we obtain a separate, independent501

source of “ground truth” data on living standards in Nigeria. This502

is the 2019 Nigerian Living Standards Survey (NLSS), an ambitious503

household survey financed by the World Bank and implemented504

by Nigeria’s National Bureau of Statistics (39). The survey was505

conducted with 22,110 households in 22,104 unique locations. For506

each household in this dataset, we observe the exact geocoordinates,507

as well as a rich set of questions about socioeconomic conditions.508

We use the responses to these questions to construct a DHS-style509

wealth index for each NLSS household.§ The NLSS, which has not510

yet been publicly released, was never used to train the ML-based511

poverty maps, and did not influence the collection of the DHS data;512

it thus provides an objective and out-of-sample means for validating513

the alternative approaches to geographic targeting.514

D. Targeting Simulations. We simulate the geographic targeting of515

anti-poverty programs in Nigeria using two different approaches –516

one based on the ML-Based poverty maps (derived from satellite517

imagery) and the other based on the survey-based benchmark (de-518

rived from the 2018 DHS survey). The performance of these two519

approaches is evaluated using ground truth data derived from the520

2018-2019 NLSS, which is thought to be the most comprehensive521

and up-to-date survey in Nigeria.522

Specifically, we assess targeting performance based on the pro-523

portion of transfers that would reach poor and extreme poor house-524

holds under different approaches to geographic targeting. Using the525

Nigeria-specific World Bank poverty line of 377 Nigerian Naira per526

person per day ($1.05 USD in 2018), we estimate from the NLSS527

data that 40.5% of the population is poor (consumption below528

the poverty line), and 8.2% is extremely poor (consumption below529

half the poverty line). Since neither the DHS nor the ML-model530

provide direct income or consumption data, we use these percent-531

age thresholds to identify the poor and extreme poor using the532

wealth information provided by the DHS and ML-model.¶ Thus,533

households with wealth indices in the bottom 8.2% are classified as534

extreme poor, and the bottom 40.5% as poor - i.e., poor is inclusive535

of extreme poor.536

Based on these thresholds, we can classify each household in the537

NLSS evaluation data as extreme poor, poor, and non-poor; we can538

likewise calculate the fraction of households in each administrative539

unit that fall into each category of poverty. When calculating state-540

level poverty rates, we use the survey sample weights; no weights541

are used to calculate poverty rates at the LGA and Ward level.542

We then simulate geographic targeting policies at the state,543

LGA, and ward level, where the targeting is determined using544

estimates from the ML-based poverty map (“ML-based method”),545

the DHS-based poverty map data (the “benchmark method”), and546

the NLSS-based poverty map (the “oracle method”). Under each547

approach, we assume that 100% of the households within a given548

administrative unit will receive the same benefit, which is how the549

Nigerian government originally envisioned this program would be550

implemented. Note that this implies that even the oracle method,551

where geographic targeting is determined by the same dataset used552

to evaluate targeting, will not be perfectly accurate. This is because553

there exist non-poor households in even the poorest wards of Nigeria,554

so providing benefits to everyone in the poorest wards will result in555

errors of inclusion. Likewise, errors of exclusion will occur whenever556

poor individuals live in wealthy regions – even if the targeting data557

can perfectly separate wealthy from poor regions.558

While ward-level targeting theoretically has a higher upper559

bound on performance, estimates at the LGA and state level can560

draw on more data and thus may be more accurate. It is useful to561

analyze targeting performance for these administrative units as well562

to quantify the trade-off between greater targeting precision (at the563

§The NLSS is more detailed than the DHS, and contains a superset of the DHS asset questions.
We therefore use the PCA weights from the DHS wealth index to calculate the wealth index of each
NLSS household (rather than calculating a new set of eigenvectors from the NLSS data).

¶The best approach to measuring wealth and well-being in low- and middle-income countries is a
hotly contested topic (40). To evaluate consumption poverty using information on wealth requires
that the two are monotonically related.

ward level) and potentially more accurate wealth estimates (at the 564

LGA/state level). 565

D.1. Alternative targeting criteria. In addition to the poverty maps 566

used in our main specification, which estimate mean poverty of each 567

administrative unit, we create two additional ward-level poverty 568

maps from each data source as a robustness check. The first esti- 569

mates median poverty. Because the NLSS and DHS sample weights 570

are not representative at the ward level, we use the poverty level of 571

the unweighted median household in each ward. Median wealth is 572

calculated from the ML-based map using the median of the wealth 573

estimates of each one kilometer satellite tile, weighted by estimated 574

population in that tile. The second additional map estimates the 575

fraction of households in each ward that are (extreme) poor. NLSS 576

and DHS households are classified as (extreme) poor based on the 577

percentile of their wealth index (see Section D). The unweighted 578

fraction of households in each ward that are (extreme) poor is used 579

as the targeting criteria for NLSS and DHS. For the ML-based map, 580

each one kilometer satellite tile is classified as (extreme) poor based 581

on the percentile of its estimated wealth index. The fraction of 582

people in each ward that are (extreme) poor is calculated as the 583

fraction of people who live in satellite tiles classified as (extreme) 584

poor. Note that unlike for mean and median wealth, separate maps 585

are generated for the fraction of poor households and the fraction of 586

extreme poor households. This means that the rank order of wards 587

to target may vary depending on which of the two criteria (poor or 588

extreme poor) are optimized for. 589

E. Issues of Incomplete Survey Coverage. One limitation of the sur- 590

veys — both the DHS data used to construct benchmark estimates 591

of poverty, and the NLSS data used to evaluate targeting perfor- 592

mance — is that the data are sparse. As we discuss in greater detail 593

below, only 13.8% of Nigerian wards have one or more surveyed DHS 594

households, and only 22.9% of wards have one or more household 595

in the NLSS. 596

E.1. Incomplete evaluation data. While great care was taken in the 597

design of the NLSS survey to ensure that the survey population was 598

representative of the full population of Nigeria (and also representa- 599

tive of each state), we are unable to evaluate the performance of the 600

ML-based and survey-based poverty maps in the 8.8% of LGAs and 601

77.1% of wards where no ground truth NLSS data exists. To ensure 602

that results are comparable for all targeting approaches, we further 603

limit our results on targeting accuracy to the 77% of LGAs and 5% 604

of wards where both the NLSS and DHS surveys include at least 605

one household. When evaluating targeting for LGAs and wards, we 606

also report results when performance is measured only on the subset 607

of wards where the the NLSS contains at least 20 households, and 608

the subset of LGAs where the NLSS contains at least 30 households. 609

This effectively removes the wards and LGAs where our ground 610

truth estimates of poverty have the highest variance. 611

E.2. Incomplete benchmark data. In a practical policy setting, the 612

incomplete coverage of the survey-based poverty maps implies that 613

those data could not be used in isolation to determine a national 614

ward- or LGA-level geographic targeting policy. Instead, the policy 615

would either need to be designed at the state level (where DHS 616

coverage is complete); or some form of interpolation would be 617

required to make decisions about LGAs and wards where data does 618

not exist. 619

In the targeting simulations, we will evaluate the performance 620

of the benchmark approach using two different methods. The first, 621

which we consider to be a theoretical upper bound on the accuracy 622

of the benchmark approach, considers only those administrative 623

units where both DHS and NLSS surveys were conducted (5.3% of 624

all wards and 76.9% of all LGAs). This should be interpreted as 625

the performance that would be achieved in the benchmark case, if a 626

much larger-scale survey were conducted that could reach households 627

in 100% of wards, and was of comparable quality to the DHS survey 628

data. 629

In the second method, we estimate the real-word performance of
the benchmark approach by accounting for the fact that it does not
measure households in all wards or LGAs. To do so, we interpolate
estimates for a fraction of the wards and LGAs, and measure the
resulting change in targeting accuracy. Specifically, for each LGA 8,
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we impute a wealth estimate as:

,̂L (8) =
(

1
�8,L

) ∑
ℎ∈�
(0ℎFℎ)1{S(ℎ) = S(8) , L(ℎ) ≠ 8 } [2]

�8,L =
∑
ℎ∈�

0ℎ1{S(ℎ) = S(8) , L(ℎ) ≠ 8 }

Here, ℎ is a survey household in state S(ℎ) and LGA L(ℎ), with
survey weight 0ℎ and wealth index Fℎ. Intuitively, this gives the
survey-weighted mean wealth of households in the same state as a
given LGA, but not within the LGA itself. Analogously, ward 8 is
interpolated as:

,̂W (8) =

(

1
�8,W

) ∑
ℎ∈�

Fℎ1{L(ℎ) = L(8) ,W(ℎ) ≠ 8 } ∃ℎ ∈ �8,W
,̂L (! (8)) �ℎ ∈ �8,W

Where �8,W and �8,W are defined analogously to Eq. (2). Above,630

W(ℎ) gives the ward in which survey household ℎ is located. Thus,631

if at least one household exists in the survey data that is in the632

same LGA as a given ward, the ward is interpolated as the simple633

average of all such households. Otherwise, the ward is interpolated634

as the survey-weighted average of all households in the same state635

as the ward but not the ward itself.636

These interpolated estimates are generated for each ward in637

our sample – i.e., wards in which both the benchmark (DHS) and638

evaluation (NLSS) surveys contain at least one household. To639

approximate the real-world performance of the benchmark approach,640

we choose a subset of its wards at random to replace with their641

interpolated values. The number of wards replaced is selected so642

that the fraction of the sample that is interpolated is equal to643

the fraction (86.2%) of wards in the full country for which the644

benchmark survey does not contain data (and would thus require645

interpolated estimates in practice). We repeat this randomization646

process 1,000 times, and report results for the iteration with the647

median performance, as determined by the area under the ROC648

curve.649

F. Estimating Demographic Parity. We estimate the “fairness” of tar-650

geting based on statistical statistical parity (14), which defines a651

“fair” allocation as one in which the fraction of households in a652

specific group receiving transfers is equal to the fraction of house-653

holds in that group which are truly poor. We acknowledge that654

other notions of fairness exist and may conflict with this focus on655

statistical parity (41).656

Our analysis assesses statistical parity for four demographic657

characteristics that are recorded in the NLSS survey: gender, age,658

religion, and language (a proxy for ethnicity, which is not recorded).659

We observe these characteristics just for the head of household, so660

our evaluation focuses on the extent to which households with a661

household head of a certain type are under- or over-targeted.662

The fraction of households in each ward in each demographic663

category are estimated using NLSS data. NLSS data are also664

used to estimate the total fraction of poor households that belong665

to each demographic group. This reference statistic is calculated666

for the subset of wards in which targeting simulations occur (i.e.,667

those with coverage in both the NLSS and DHS surveys); thus, it668

may not accurately reflect the country-level demographics of poor669

households.670

For each targeting approach (optimal (NLSS), survey bench-671

mark (DHS), and ML-based), we calculate the fraction of targeted672

households in each demographic group as the percentage of the673

population targeted varies, using the NLSS estimates for ward-level674

demographics. We also calculate a snapshot of parity for a program675

targeting 10% of the population. For demographic group 3, we676

calculate the extent of over or under-targeting using:677

Fraction of targeted in 3 − Fraction of poor in 3
Fraction of poor in 3 · 100 [3]678

We generate confidence intervals by bootstrap sampling equation679

Eq. (3) 1,000 times.680
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