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ABSTRACT

A variety of technical errors have arisen
in data analysis when using cDNA or
oligonucleotide microarrays. One of the
most insidious problems is the saturation of
the hybridization signal of high-abundant
transcripts. This problem arises from the
truncation of the laser fluorescence signal.
When the hybridization signal on the mi-
croarray is very strong, this truncation can
result in serious consequences that may not
be readily apparent to the user. As an illus-
tration of this problem, two subclasses of
normal human tissue samples (six liver and
six lung samples) were analyzed with
GeneChip probe arrays to evaluate the
patterns of expression for approximately
7000 human genes. Five of these data sets
were found to suffer from signal truncation.
This caused several tissues to be incorrectly
classified using hierarchical clustering. To
rectify this problem so that the gene expres-
sion data could be properly compared and
clustered, we developed a “filtering” proce-
dure that identifies a subset of genes least
affected by the signal saturation. This filter-
ing procedure can be obtained at www.
hugeindex.org.

INTRODUCTION

DNA and oligonucleotide microar-
rays are gaining widespread acceptance
as powerful tools for genome-wide gene
expression analysis. Rigorous statistical
analysis and pattern recognition capabil-
ity are needed now more than ever to ex-
tract useful biological information from
these data. Currently available biostatis-
tics tools mainly focus on “high-level
analysis” (1,6,8,11) that assumes from
the outset that the data are free of instru-
mental defects. Less work has been done
on modeling and correcting for system-
atic errors in the large-scale gene expres-
sion measurements (2,5).

Using Affymetrix microarrays (San-
ta Clara, CA, USA), we have identified
a variety of technical errors that can
arise in data analysis and give incorrect
results when one uses higher-level clus-
tering algorithms. One of the greatest
problems is the saturation of the hy-
bridization signal of abundant tran-
scripts. This problem arises from the
truncation of the laser fluorescence
measurements when the hybridization
signal exceeds a maximum intensity.
When the hybridization signal for cer-
tain probes on the microarray is very
strong, this truncation has two serious
consequences that may not be readily
apparent to the user. First, the probe sets
for the most abundant transcripts will be
bounded above by a maximal hybridiza-
tion signal. Then, when the Affymetrix
software rescales the data to a mean
“target intensity”, these maximum sig-
nals are all shifted to relatively low val-
ues. Second, when both the perfect

match and control mismatch signals of
the probe sets for highly abundant tran-
scripts are truncated, the resulting “av-
erage difference” computed by the
Affymetrix software as a measure of the
expression level will be artificially
small. The proper way to avoid signal
truncation is to lower the sensitivity of
the array scanner, and Affymetrix has
been routinely adjusting the detector
photomultiplier tube (PMT) voltage to
remedy these problems. However, a sig-
nificant amount of data may have been
collected before adjustment that suffer
from saturation defects, which may
only be apparent long after the original
samples have been processed.

As an illustration of this problem and
its resolution, two subclasses of normal
human tissue samples (six liver and six
lung samples) were analyzed with
Affymetrix GeneChip probe arrays
(GeneChip HuGeneFL) to evaluate the
mRNA expression patterns for approxi-
mately 7000 human genes. Five of these
data sets were found to suffer from sig-
nal truncation. To rectify this problem
so that the gene expression data could
be properly compared and clustered, we
developed a filtering procedure that
identifies a subset of genes least affect-
ed by the signal saturation problem.

MATERIALS AND METHODS

Tissue Specimens

Discarded human liver and lung
specimens were obtained from 12 indi-
viduals, including six males and six fe-
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males with average ages of 69.5 and
63.5 years, respectively. These speci-
mens were provided by tissue banks and
had been obtained in the course of sur-
gical procedures (Massachusetts Gener-
al Hospital and Brigham & Women’s
Hospital, Boston, MA, USA) with ap-
propriate Institutional Review Board
(IRB) consent. Hematoxylin-stained
slides were generated from each speci-
men and reviewed by a pathologist.
Only those with normal histological ex-
aminations were included in this study.

RNA Preparation for Hybridization

Total RNA was isolated using TRI-
ZOL solution (Invitrogen, Carlsbad,
CA, USA). As previously described (6,
10), 7 µg total RNA was started for ds-
DNA synthesis using the SUPERSCRIPT
Choice System (Invitrogen) and a T7-
(dT)-24 primer (Geneset Oligos, La Jol-
la, CA, USA). The cDNA was purified
using Phase Lock Gel (Eppendorf-5
Prime, Westbury, NY, USA). In vitro
transcription was performed to produce
biotin-labeled cRNA using a BioArray
HighYield RNA Transcript Labeling Kit
(Affymetrix), according to the manufac-
turer’s instructions. The biotinylated
RNA was cleaned with the RNeasy

Mini kit (Qiagen, Valencia, CA, USA).

Hybridization of RNA to High Den-
sity Oligonucleotide Microarrays

Biotinylated cRNA (20 µg) was frag-
mented and hybridized to microarrays
containing oligonucleotide probe sets
representing approximately 7000 known
human genes (GeneChip HuGeneFL)

using the protocol described previously
(6). Briefly, the hybridization mixture
was incubated at 99°C for 5 min, fol-
lowed by incubation at 45°C for 5 min.
The hybridization was then carried out
at 45°C for 16–18 h. After washing, the
array was stained with streptavidin-phy-
coerythrin (Molecular Probes, Eugene,
OR, USA) and amplified with bio-
tinylated anti-streptavidin antibody
(Vector Laboratories, Burlingame, CA,
USA). The intensity of all of the features
of the microarrays were captured and
examined for artifacts using Affymetrix
GeneChip software version 4.0 accord-
ing to standard procedures (7). The
GeneChip software was used to generate
quantitative gene expression values
measured by the average difference be-
tween the hybridization intensity and the
perfect match and mismatch probe sets.
The raw expression levels were then
multiplied by a scaling factor to make
the mean expression level on the micro-
array equal to a target intensity of 100.
This scaling is automatically performed
by the Affymetrix software to normalize
the gene expression levels to allow com-
parison between any two samples.

Quality Control of Samples

To initially assess total RNA degra-
dation, a portion of the RNA from each
sample was dissolved on a 1% agarose/
formadehyde gel using standard proce-
dures. The samples with unsatisfactory
quality were discarded. Each probe ar-
ray contains several prokaryotic genes
that serve as hybridization controls for
RNA spiked into experimental samples.
In addition, before hybridization to ex-

Vol. 32, No. 2 (2002) BioTechniques 331

1. Plot histograms of gene expression levels for all samples (An Excel macro
program for plotting histograms of expression data is available at www.
hugeindex.org).

2. An abrupt termination of the expression distribution indicates that no genes
have expression levels beyond the termination point. This suggests electronic
clipping/truncation problems.

3. Identify the highest expression level for each sample. This expression level
represents the possible level of signal truncation.

4. The smallest high expression level among all samples will be chosen as the
truncation point for filtering the data from all samples.

5. A subset of genes with expression levels greater than the target intensity
(target intensity = 100) and less than the truncation point is identified for 
further analysis.

Table 1. The Filtering Process



perimental arrays, the quality of cRNA
was assessed using test arrays (Test2
gene arrays; Affymetrix) designed to
compare the relative expression levels
of several housekeeping genes, includ-
ing β-actin and GAPDH, using oligo-
nucleotide probes complementary to
both the 3′ and 5′ ends of gene prod-
ucts. According to the manufacturer’s
instructions, when the ratio of the aver-
age difference of the 3′ end to the 5′
end of gene products is equal or less
than 3, the cRNA quality is deemed sat-
isfactory. Data that failed to meet this
criterion were excluded from analysis.

Data Analysis

A hierarchical clustering algorithm
(AGNES) in the statistical package S-
PLUS (9) was used to classify all 12
samples according to the relative varia-
tion in gene expression patterns. The
gene hybridization intensities (from
GeneChip software) were appropriately
scaled to a target intensity of 100 to fa-
cilitate the comparison of the data from
all arrays. A Microsoft Excel macro
program was created for plotting histo-
grams of expression data (available at
www.hugeindex.org). To minimize the
effects of unreliable expression levels of
genes with small values for the average
difference, we restricted our analysis to
genes whose expression levels exceeded
the target intensity in at least one of the
12 samples. Since the majority of genes
on the arrays are called “Absent” by the
Affymetrix software, most of the expres-
sion levels are at or below the target in-
tensity (100) and can be considered to be
background noise (2). The cluster analy-
sis was initially restricted to the subset
of 628 genes that met this criterion.

RESULTS AND DISCUSSION

Identification of Signal Truncation

We used oligonucleotide microarrays
(GeneChip and HuGeneFL) to evaluate
the mRNA expression patterns of ap-
proximately 7000 human genes for sam-
ples of two normal human tissues (six
liver and six lung samples) (3). A scatter
plot of gene expression levels for ap-
proximately 7000 genes was used to as-
sess the gene expression correlations be-

tween pairs of samples of the same tis-
sue type. Under identical scaling and
normalization processes, a comparison
of two lung samples (Lung001 and
Lung002) prepared from different indi-
viduals using old generation chips (low-
er signal sensitivity) revealed a 45° lin-
ear scatter-plot distribution (Figure 1A),
as was expected. However, a compari-
son of Lung002 with a different sample
(Lung014) using one of the new-gener-
ation chips with enhanced signal sensi-
tivity clearly revealed signal saturation
in the Lung014 data. Figure 1B shows
the signal saturation as an apparent
plateau of expression level in Lung014
at a value of about 1400. This was
caused by the truncation of the laser flu-
orescence measurement at the maximal
intensity and the subsequent application
of the manufacturer’s normalization al-
gorithm, leading to a decrease in the cal-
culated expression level. Interestingly,
when two samples that manifest trunca-
tion are compared with each other (data
not shown), there are no obvious signs
of saturation, aside from lower than usu-
al maximum expression levels. Using
the scatter plots to compare pairs of
samples, we identified three liver sam-
ples (Liver008, Liver009, and Liver010)
and two lung samples (Lung014 and
Lung018) containing truncated signals.

Signal Truncation Affects Accurate
Sample Classification

We first selected a subset of 628
genes that exhibit expression levels
greater than the target intensity of 100 in
any one of the 12 samples (six liver and
six lung samples). This selects the genes
that are most likely to be called “Pre-
sent” by the Affymetrix software algo-
rithm and that exhibit the least variabili-
ty (2). We subjected this subset of genes
to a hierarchical clustering algorithm
(4,9) to group the tissue samples. Instead
of neatly separating the data into one liv-
er and one lung cluster, the three liver
(LI008–LI010) and two lung (LU014
and LU018) samples that had truncated
signals were put into a third subclass
(Figure 2A). The hierarchical clustering
of these data led to the incorrect conclu-
sion that there were three subclasses of
tissue samples. Furthermore, the truncat-
ed signals can distort the calculation of
fold changes for individual genes.
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Filtering Genes with Electronically
Truncated Signals

To correct this problem, we devel-
oped a stringent filtering process to
identify the subset of genes that were not
affected by truncation in any of the sam-
ples. Our approach was to first survey
the distribution pattern of gene expres-
sion for each sample using a histogram
of the average differences. Samples that

did not have truncated signals yielded a
histogram showing the gene expression
distribution in a bell-shaped curve (Fig-
ure 1C) with a long tail extending to
high expression levels. However, sam-
ples that contained truncated signals
showed an abrupt termination at the ex-
pression level of truncation (Figure 1D).
For example, the distribution of expres-
sion levels for Lung014 showed a sharp
drop at an expression level of 1400 (Fig-

ure 1D). After surveying the 11 other
liver and lung samples, expression-level
distributions were also sharply truncated
for liver008, 009, and 010 and lung018
at levels of 3100, 1900, 2600, and 2900,
respectively, while those for liver002,
004, and 005 and lung001, 002, 004, and
005 extended smoothly to values greater
than 10000. These truncation levels (af-
ter software normalization) differ from
chip to chip because of variations in the
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Figure 1. Scatter plots (A and B) and histograms (C and D) of gene expression levels for approximately 7000 genes using old-generation versus new-gen-
eration Affymetrix chips. (A) Lung001 and Lung002 were lung samples from two different individuals run on the old-generation chips that showed a 45° linear
scatter plot distribution. (B) Lung002 and Lung014 were lung samples from two different individuals, with Lung002 run on the old-generation chip and Lung014
on the new-generation chip. The gene expression levels of Lung014 showed a plateau pattern at level of approximately 2000. (C) The histogram for the expression
levels for Lung002, which did not have truncated signals, showed a bell-shaped curve. (D) The histogram for the expression levels for Lung014, which contained
truncated signals, revealed an abrupt termination of the expression distribution at the level of truncation. The X-axis represents the gene expression level in bins for
100 bins of width 100 between the expression levels of 0 and 10000, and the Y-axis represents the frequency of gene expression on a logarithmic scale.



RNA quality and the hybridization of
the samples. Therefore, we concluded
that genes in any sample with expression
levels above the minimum truncation
level of 1400 could not be reliably com-
pared between all of the samples and
must be excluded from the data set. To-
gether with the requirement of expres-
sion levels greater than the target inten-
sity of 100 in all samples, this filtering
procedure generated a subset of 376
genes. A hierarchical clustering analysis
applied to this subset of genes revealed
the correct classification of the two tis-
sue classes, liver and lung (Figure 2B).

In summary, we propose a stringent
filtering procedure (Table 1) for oligo-
nucleotide microarray data to identify
the most reliable gene expression mea-
surements. By this method, the genes
with extremely high and low expression
are excluded, leaving those of interme-
diate expression levels. Here, we report
two observations: (i) the genes with in-
termediate expression levels are the
least variable and are less likely to suffer
truncation problems and (ii) the genes
with intermediate expression levels
maintain “sample-specific” expression
patterns. Using this subset of filtered
genes for hierarchical clustering analy-
sis, we were able to exclude the defec-
tive data and correctly group the tissues.
This procedure for identifying satura-
tion problems and correcting the data set
should be essential when such data are
used for class discovery, as in cancer
studies. It also eliminates erroneous
identification of differentially expressed
genes related solely to truncation arti-

facts. In particular, this procedure will
be a useful tool for comparing data gen-
erated from pre- and post-scanner ad-
justments and after other signal enhanc-
ing improvements. Finally, we note that
these signal saturation problems are not
unique to Affymetrix GeneChip data
and should be evaluated and corrected
when using any microarray gene expres-
sion platform.
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Figure 2. Hierarchical clustering of 12 normal human tissue samples. (A) Using a subset of 628
genes that include those with saturated signals, the cluster analysis divided the tissues into three clusters,
suggesting that the samples contain three subclasses instead of two. (B) After applying the filtering pro-
cedure to the data, a subset of 376 genes that exclude those with saturated signals, the samples were clus-
tered correctly into two subclasses. Liver tissue includes LI002, LI004, LI005, and LI008-010, and Lung
tissue includes LU001-2, LU004-5, LU014, and LU018.
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