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ABSTRACT
In recent years there has been a proliferation in the use of large-
scale, passively collected digital trace data to study the mobility and
migration patterns of individuals in developing countries. Analysis
of mobile phone and social media data, among other sources, has
immediate policy applications that range from disease monitoring
and city planning to disaster management and humanitarian relief.
Unfortunately, existing methods for mining location-based infor-
mation from passively collected data are generally not well suited
to a large number of individuals in developing countries. This is in
part due to the fact that technology use is quite heterogeneous, and
that the lower intensity use patterns of many individuals produces
a sparser digital trace.

In this paper, we present a method for predicting the approxi-
mate location of a mobile phone subscriber that is more appropriate
to contexts where the signal generated by each individual may be
intermittent, but the collective population generates a large amount
of data. This method works well when, for instance, an individ-
ual is not consistently active on the network or when the phone is
off. Our model uses a nonparametric approach to probabilistically
interpolate locations, and has the advantage of associating a confi-
dence with each prediction. We test this method on a large dataset
of anonymized mobile phone records from Afghanistan, and find
that we can correctly predict a subscriber’s unknown location in
76%-95% of cases, and that on average our predicted location is
off by 0.2-1.9 kilometers.
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1. INTRODUCTION AND MOTIVATION
The expansion of mobile phone networks and the rapid adoption

of Information and Communication Technologies (ICTs) in devel-
oping countries has created a unique opportunity for researchers
and policymakers to obtain large-scale, reliable, quantitative data
on the behaviors of individuals who have historically been difficult
to monitor. The increasing availability of such data raises important
ethical considerations regarding privacy and population legibility
[17, 18], but it also creates tremendous opportunity for researchers
and policymakers interested in better understanding and developing
appropriate policy for historically marginalized populations.

One particular area of promise is the use of spatiotemporal data,
such as the traces generated through the use of mobile phones or
other geolocated digital devices, for the modeling and measurement
of human mobility. Such data generally have spatial and temporal
markers that approximately locate the person using the device at the
time when she takes an action, such as making a phone call, sending
an SMS, posting a Tweet, or downloading emails or webpages. As
such, these data can allow for the granular reconstruction of the
trajectory taken by that individual through space over time, and
this property of the data has generated a spate of recent research on
human mobility [10, 19, 14].

Such research has many applications relevant to policy in de-
veloping countries. Improved models of mobility based on mobile
phone data can better enable epidemiologists and public health of-
ficials to understand and interrupt the spread of malaria and other
diseases [20, 8]. More accurate data on the location and movement
of populations can also improve disaster response and planning [2,
11]. Particularly in urban areas, location data from phones can im-
prove urban layout and city planning [16]. More generally, internal
and international migration rates are a key input to economic pol-
icy, and phone data may enable more fine-grained perspectives on
the location and structure of local populations [5, 6, 3, 4].

In this paper, we present a method, model, and scalable algo-
rithm for continuously inferring the location of an individual at an
arbitrary point in time, based on a limited and potentially quite
sparse set of spatiotemporal observations. We develop and cali-
brate this method using a large dataset of anonymized mobile phone



records from Afghanistan, but in principle the method could be ap-
plied to any dataset where the location of individuals are observed
intermittently over time. In the mobile phone context, the use case
we have in mind is one in which an individual might only make
a handful of calls on a given day or in a given week; the method
in this paper allows for probabilistic inference of the individual’s
location at points in times when the individual is not active on the
network and the actual location is unknown.

Specifically, we develop a technique that relies on past trajecto-
ries taken by the individual of interest, as well as the trajectories
taken by similar individuals in the past. Our approach constructs a
probability distribution of likely locations for each person at each
point in time, where the probability of each location is determined
by the universe of observed trajectories. Trajectories between sim-
ilar users and trajectories with similar temporal features (such as
the time of day or day of week) contribute a greater weight to the
probability distribution. A primary advantage of the method we
present is that the weights need not be specified ex ante; rather, the
model is non-parametric and the relevant parameters can be effi-
ciently learned via cross-validation. We also present two scalable
implementations of the algorithm, one in a Map-Reduce paradigm
that is optimized for deployment on a cluster, as well as a memory-
intensive version that is better suited to a single node with a large
amount of memory.

In the following section, we describe related work on similar
problems and discuss the primary ways in which this method is dif-
ferent from previous research. Section 3 then describes the model,
beginning with an intuitive overview and proceeding to a formal de-
scription of the model and algorithm. Section 4 describes the data
on which we test the model, and Section 5 presents the empirical
results with a discussion of simple extensions that can significantly
improve performance. Section 6 concludes with a discussion of the
advantages and limitations of our approach, and outlines next steps
for future work.

2. RELATED WORK
A rich literature in transport planning and civil engineering is

concerned with modeling and predicting human movement [1]. More
recently, the increasing availability of fine-grained data from mo-
bile phone networks and other GPS-enabled devices has created
new opportunities for building high-resolution models of human
movement [16]. While a great deal of the focus of this literature
has been on predicting aggregate population flows [5], a handful
of recent studies have utilized mobile phone call detail records to
predict individual locations and trajectories.

The focus of most of these efforts have been on using machine
learning techniques including decision trees [15], markov models
[21, 12], and hybrid approaches [21] to predict the next location of
an individual given a sequence of previous locations. Many of these
studies additionally incorporate rich GPS data beyond the simple
metadata from call and SMS transactions. Both [9] and [12] take
the basic algorithm a step further and develop frameworks for de-
ploying a destination prediction system.

In the studies most closely related to our own, [7] and [13] demon-
strate the value of incorporating collective travel patterns for pre-
dicting individual locations. In both cases, the authors use data
from the Boston metropolitan area to infer future movements based
on past patterns of travel. The predictive model they develop ad-
ditionally incorporates known geographic features of the physical
environment, which they believe is a proxy for the activities that
affect travel decisions. After careful calibration on a sample of
highly active mobile phone users, the authors report being able to
predict locations with an accuracy of roughly 1.5 kilometers. In a

Figure 1: Sparsity of data. The figure shows all of the observed
transactions (blue vertical lines) for ten different subscribers in
Afghanistan. Subscribers are sampled randomly, one from each
decile of mobile activity, wherein the median subscriber (Decile 5)
makes 6 unique transactions per day.

related extension, [21] integrate a markov-based predictor to pre-
dict the movements of 106 individuals associated with MIT, and
find that the hybrid predictor performs significantly better than a
simpler model.

Our work builds upon and distinguishes itself from previous re-
search in several critical aspects. First and most importantly, it is
designed to allow for inference in the developing country context,
where the data is generated by a deeply heterogeneous population
of subscribers, the majority of whom do not use their devices at reg-
ular and consistent intervals. The model we develop provide pre-
dictions and confidence intervals for those predictions, even when
data is sparse. The confidence will be higher for regular network
users, but gracefully scales to individuals with sporadic activity.

This issue of data sparsity can be seen in Figure 1, which shows
the number of transactions observed in a typical day for subscriber
in Afghanistan. To construct Figure 1, all subscribers are ranked
by the average number of transactions per day, and then one sub-
scriber is sampled randomly from each decile of activity. While the
representative subscriber in the top decile is very active, and consis-
tently uses his or her phone from roughly 7:30am until 11:30pm,
below the 80th percentile usage is actually quite sparse, and for
many subscribers there are long periods of time when no trans-
actions are made and thus the subscriber’s location is not directly
observed. These statistics are in contrast to the typical dataset used
by much of the literature discussed above, where, for instance [7]
restrict their analysis to subscribers with “100 network connections
per day (with individual inter-event time below 1 hour in 75 per-
cent of the cases)", and [21] have tens of thousands of observations
per individual. As we show later in Section 5.3, such a restric-
tion would eliminate over 99 percent of the subscribers from our
population. The performance would certainly improve on such a
subsample, but this restriction would severely limit the relevance
of the method to developing countries.



Figure 2: Known and predicted locations of a single individual. The green star indicates the start location and the red star indicates the
end location, both of which are directly observed. The voronoi cells are colored according to the probability that the individual is in those
locations, as determined by the inference algorithm. The actual location (held back for the purposes of prediction) is indicated by the blue
star. Predicted locations tend to lie along major roadways, and the top predicted location lies along the fastest road route between the start
and end location, though off of the shortest path between the two locations.

Our approach is further designed to function well in information-
poor environments. Thus, we explicitly avoid incorporating any
structured input data such as the location or type of geographical
features such as roads and other points of interest. While such fea-
tures would likely constrain trajectories in a manner that would im-
prove predictive accuracy, in many of the environments for which
our method is designed, structured data of this nature does not
exist. Similarly, the approach we describe is intentionally non-
parametric, and relies as little as possible on a priori knowledge
such as the relative weights to be placed on trajectories of the same
individual vs. collective behavior. Instead, we develop a general-
ized framework that relies upon the notion of “trajectory similarity"
to determine the weight and confidence associated with each pre-
dicted location. As described in Section 3.2.2, the shape of the
similarity function, as well as any associated parameters, can be
learned via cross-validation.

3. METHODS AND MODEL

3.1 Overview of approach
The model we develop enables the probabilistic interpolation of

an individual’s location when the true location is unknown. Intu-
itively, given two observations of the individual’s spatiotemporal
location (the start time and location and the end time and location),
as well as a “query time” where the actual location of that indi-
vidual is unknown, the algorithm constructs a probability distribu-
tion over possible locations for the unknown time. The probability
distribution is built by analyzing the past trajectories of all other
individuals for whom data is available, leveraging the behavioral
patterns of the collective to make inferences about the individual.
Similar trajectories – where similarity is carefully defined in the
following section – are weighted more heavily than dissimilar tra-
jectories.

A graphical representation of the output of the algorithm is shown
in Figure 2. We construct a sample query for a given subscriber,
which consists of the metadata from two mobile phone transac-

tions. The first transaction was routed through the cell phone tower
marked with a green star, and the second transaction was routed
through the cell phone tower marked with a red star. All of the other
cell phone towers in the region are illustrated with yellow and black
dots. The black lines create a voronoi division of the space, which
we overlay on a Google Map of the geographic region. In this par-
ticular instance, the first transaction occurred at roughly 11:00 am
and the second transaction occurred roughly an hour later on the
same day. We then pick an intermediate query time in between the
two transactions, and use our algorithm to construct a probability
distribution over space at that query time. This probability distribu-
tion is used to color the voronoi cells, where the color indicates the
predicted probability that the individual is in a given cell. In this
figure, we chose a query time where the true location was known
(but not included as training data for the algorithm); this location is
indicated by a blue star.

In the instance depicted in Figure 2, note that the intermediate
location – both the predicted location (indicated by the red cell)
and the actual location (indicated by the blue star) lie off the direct
pathway between the start (green star) and end (red star) locations.
This illustrates one advantage of our method: rather than simple
linear interpolation, which would predict a location along the direct
path, our algorithm is able to recover the more common route taken
between these locations, even without explicit knowledge of the
road network or other physical landmarks. Here, it so happens that
the direct path is blocked by two large buildings (Kabul Medical
University and the Ministry of Higher Education), which forces the
individual to take an arterial road to the southeast.

Aside from the primary prediction, indicated by the red cell, the
algorithm also reveals useful information about the other lower-
probability predicted locations. In particular, there are a large num-
ber of locations to which the model assigns low but non-zero proba-
bility, indicated by the pale yellow cells in the figure. Some of these
locations are rather distant from the known start and end points, but
generally these fall along major highways or transit routes.



3.2 Predictive Model
Formally, we are interested in predicting the location l of an in-

dividual u at time t, which we define as Loc(u, t). We denote by
u∗ a specific “query” individual with unknown location at a spe-
cific time t∗, but whose prior location l∗s was known at a time t∗s
before t∗, and whose later location l∗f was known at a time t∗f after
t∗. Our goal is thus to determine, for each possible location l, the
probability that u∗ was at l at time t∗,

P
(

Loc(u∗, t∗) = l
∣∣∣∣ Loc(u∗, t∗s ) = l∗s

Loc(u∗, t∗f ) = l∗f

)
=

Wl

(
u∗, t∗

∣∣ t∗s , t∗f , l∗s , l∗f
)

∑
L
i Wi

(
u∗, t∗

∣∣ t∗s , t∗f , l∗s , l∗f
) (1)

where Wl(·) indicates the weight given to location l at time t∗ for
individual u∗, and is defined by

Wl(·) =
N

∑
u

∑
ts∈e(u)

∑
t f∈e(u)
∀ts<t f

∑
t∈e(u)
∀t>ts,
t<t f

S(u,u∗, t, t∗, ts, t∗s , t f , t∗f , ls, l
∗
s , l f , l∗f )

(2)
where e(u) is the set of all timestamps observed for individual u
and S(·) indicates the similarity between a query event (denoted
with asterisks) to the observed events (denoted without asterisks).
We define this similarity as

S(·) = h(u, u∗)×k (t, t∗)× ks (ts, t∗s )×
k f (t f , t∗f )×gs (ls, l∗s )×g f (l f , l∗f )

(3)

Thus, similarity is determined by four components: the similarity
between two individuals h(u,u∗); the similarity between the query
time and observation time k(t, t∗); the similarity in the start times
and end times of the query and observation k{s, f}(t, t∗); and the
similarity in the start and end locations of the query and obser-
vation g(l, l∗). In principal, these similarity functions need not be
paramaterized a priori, and could be learned in a supervised frame-
work. For initial testing, however, we specify these components as
follows:

1. h(u,u∗): The similarity between two individuals u and u∗ is
a step function that assigns a different weight to past trajec-
tories by the query individual

h(u, u∗) =

{
α if u = u∗

1−α otherwise
, where α ∈ [0, 1]

2. k(t, t∗): The similarity of a query time and the timestamp of a
known event uses a simple kernel function that places higher
weight on proximate events

k(t, t∗) =
1

|t− t∗|ε
, where ε >= 0

3. k{s, f}(t, t∗): The similarity in start and end times is defined
by a step function that excludes events more than 30 minutes
removed:

ks (ts, t∗s ) = k f (t f , t∗f ) =

{
1 if |t{s, f}− t∗{s, f}|< 30min

0 otherwise

4. g{s, f}(l, l∗): The similarity in locations is defined by a geo-
metric distance function that places even weight on observa-

tions within a specified radius of the query location

gs (ls, l∗s ) = g f (l f , l∗f ) =

{
1 if distance(l{s, f}, l∗{s, f})<= K

0 otherwise

3.2.1 Implementation and algorithm
We provide two scalable implementations of our model in Al-

gorithm 1 and Algorithm 2. Algorithm 1 is a linear method best
suited for a single-server, multi-threaded environment where the
server has a large amount of memory. In Step 1 of the algorithm,
the training data, which consists of all historical locations for all
N individuals, is redundantly indexed in memory. LocationMap
indexes the training data by the user’s location and time, while
UserMap indexes by the anonymized user ID. After this index-
ing, which can be performed offline and re-indexed as new data is
received, new queries can be executed on the fly and in parallel. To
make the prediction for a query, first the start and end locations of
the query user u∗ are found out for the query time t∗ (Step 2.1). In
the next step all the users who satisfy the query conditions (k{s, f}
and g{s, f}) are found from the training data (Step 2.2). In the final
step, predictions for the unknown location are made using the loca-
tions of the MatchedUsers from the training data using model (1)
(Step 2.3).

Algorithm 2 utilizes a MapReduce framework and is optimized
for a distributed environment with minimal requirements on the
compute nodes. This is a batch processing approach where pre-
dictions are made on a sets of M queries at a time. In Step 1, the
algorithm finds the start and end locations and times of each of the
M queries. In Step 2, the mapping function emits records match-
ing the query, where the start and end locations for each query are
compared against each possible pair of records for every user in
the training data. Thus, in a single pass of the data, all matching
records are found for all M queries. For efficiency, only the nec-
essary records are emitted, reducing the number of relevant key-
value pairs. Lastly, the reducing function makes predictions for the
unknown locations of each query from the location records of the
matched users.

The different implementations have distinct advantages. Algo-
rithm 1 is appropriate in “real-time” environments where predic-
tions need to be made on the fly in constant time, and where the
model can be continuously updated with new training data. After
initialization, the predicted locations can be computed in constant
time without needing to re-train the model. However, this comes
at the cost of an expensive initialization stage which stores the full
dataset in memory, so the O(2N) memory requirements may not
scale to datasets with trillions of records. Thus, the time complex-
ity of Algorithm 1 is O(N) during the first pass and O(k) afterwards,
where k is the number of matched records for a query. By contrast,
Algorithm 2 is more effective when computational resources are
scarce, or in distributed environments like Hadoop or Spark. How-
ever, Algorithm 2 is not practical in a streaming context since a new
pass over the training data must be made for every batch of queries.
While the memory requirements are O(N), the queries execute in
O(N +Mk) for a batch of M queries with k matching records for
every query.

3.2.2 Model fitting and cross-validation
As described above, our model has two parameters that must

either be specified a priori or learned from the data: α , which de-
termines the relative weight placed on observations from the same
individual vs. the collective, and ranges from 0 to 1. Low values of
α emphasize collective behavior over previous trajectories of the
individual, while high values heavily weight past individual trajec-



Afghanistan Sample
Metric Mean SD Median Mean SD Median

Transactions per person 276.67 735.66 109 332.41 963.91 127.0
Unique locations observed 8.96 11.2 5 9.2 12.52 5.0

Radius of gyration 23.59 52.21 4.27 24.30 52.81 4.801

Table 1: Summary statistics of mobile phone record dataset. Values are computed for a single month in 2011 from a dataset covering
millions of individuals. We separately report statistics for the entire population of mobile phone subscribers, and for the random sample of
10,000 subscribers that are used in our experiments.

tories. Note, however, that for any given query there are generally
many more collective matches than individual matches. Thus, as
currently formulated, α should be viewed as the relative weight
placed on any single match, rather than the total relative weight of
the collective vs. the individual. We will return to this point later.

The second parameter, ε , determines the weight given to trajec-
tories that have a known location closer to the query time of the
query individual. Specifically, ε represents the extent to which the
weight of a matching query should be discounted by the difference
between the query time and the time of the matching record. Given
the kernel function 1/(t− t∗)ε , large values of ε will decrease the
weight of matches that are distant in time from the query.1

To find optimal values of α and ε , we adopt a supervised learning
approach akin to leave-one-out cross-validation. We define our cost
function in terms of the error in kilometers between the predicted
and the actual location, as described in greater detail in Section
5.1 below. We then perform a grid search over a large range of
values for both parameters, where we cross-validate on one month
of data with a sample of 1,000 subscribers. In this dataset, we find
optimal values at α = 0.99 (emphasis on individual histories) and
ε = 4 (moderate discounting of temporally distant matches). We
will discuss our interpretation of these values in greater detail in
section 6.

4. DATA AND CONTEXT
We test the probabilistic inference algorithm described above

on a large dataset of anonymized mobile phone call detail records
(CDR) from one of the largest mobile operators in Afghanistan. A
CDR is generated any time a subscriber is involved in a transac-
tion mediated by the network, such as a mobile phone call or a text
message. Each record contains the anonymized identifiers of the
individuals involved in the transaction, the timestamp of the event,
as well as the identifier of the nearest mobile phone tower, which
we can use to map each transaction to latitude and longitude coor-
dinates. In total, this dataset contains the records of several billion
mobile phone transactions initiated by several million unique indi-
viduals.

Basic summary statistics of the dataset are presented in Table 1
separately for the entire country and for a random subset of 10,000
subscribers that we use to test performance. In the course of a
month, the median subscriber is observed slightly more than 100
times, and appears at 5 different physical locations. The distri-
bution has a long right tail with a small number of high-volume
subscribers driving the mean number of transactions to be several
times larger than the median. By either metric, this is relatively
sparse data, especially compared to the data used by most compa-

1In principle, additional components of the algorithm could be
learned from the data, including the functional form of h() or k().
We do not attempt that in this paper, but will return to this idea in
Section 6.

rable techniques in the literature, which are often based on popula-
tions transacting more than 100 times per day [7, 21].

5. RESULTS

5.1 Experimental framework
To evaluate the performance of our algorithm, we measure the

extent to which it can accurately predict the held-out locations of
individuals in the Afghanistan CDR dataset. We train the model
following Section 3.2.1 using a complete month of call records for
several million subscribers from 2011. We then draw a test sample
of 10,000 subscribers randomly and without replacement from the
list of all subscribers, and for each individual we randomly choose
a single transaction that occurs at least one week after the month
from which the training data was selected. This randomly selected
transaction serves as the “query” transaction, whereby we pass the
timestamp to the algorithm (along with the timestamp and location
of the transaction before and after the query transaction) and then
compare the probability distribution produced by the algorithm to
the actual location.

We report performance in two ways. “Accuracy" indicates whether
the predicted location is an exact match with the actual location.
“Error Distance" gives the difference in kilometers between the pre-
dicted location and the actual location. The “Top Match" method
simply selects the location that has the highest predicted probability
given by our algorithm. “Top-N Location Match" generalizes this
metrics to indicate whether the actual location is one of the three
most probable locations. In the results described below, we com-
pare the performance of our model with two simple baselines that
are commonly used in the literature. The first baseline (Baseline
1) calculates the geographic midpoint between the start and end
locations. For this baseline, we compute the error distance using
the location of the actual midpoint; to compute accuracy we use
the location of the tower nearest to the midpoint. The second base-
line model (Baseline 2) predicts the most common (modal) location
visited by the subscriber.

5.2 Performance benchmarks
Basic benchmarks of performance are reported in Table 2. When

tested on the full set of 10,000 random individuals, the Top-1 pre-
dictor is 75.8% accurate at finding the true location. This represents
a 7% (5 percentage point) improvement over the midpoint base-
line and a 19% (12 percentage point) improvement over the modal
tower baseline. The performance of the Top-3 Location Match pre-
dictor is more flexible and significantly better, resulting in 29% (20
percentage point) and 44% (28 percentage point) improvements
over the two baselines, respectively. When accuracy is measured
by the geographic distance between the true and predicted loca-
tion, both the top-1 and top-3 algorithms similarly outperform both
baselines. As can be seen in the right-most columns of Table 2, pre-
dictive accuracy is even better when tested on just the most active
subscribers.



Random Sample “Active” Subscribers
Metric Average Accuracy Error Distance Average Accuracy Error Distance

Top-3 Locations 0.917 – 0.953 –
Top-2 Locations 0.881 – 0.935 –
Top-1 Location 0.758 1.878 0.877 0.220

Baseline (midpoint location) 0.711 1.908 0.836 0.193
Baseline (modal tower) 0.635 12.496 0.590 9.791

Table 2: Model performance. Accuracy of predictions and average error (in kilometers) for three versions of the inference algorithm and for
the two baseline models described in section 5.1. Performance is reported separately for a random sample of subscribers and for a random
population of active subscribers, where “active” is relative and is defined as individuals who make more than 80 calls per day. Error distance
is not reported for the Top-2 and Top-3 methods, since the output is a list of locations rather than a single predicted location.

Figure 3: Accuracy and confidence. Figures illustrate the extent to which the accuracy is higher when prediction confidence (probability
assigned to top tower) is higher. Left: Direct relationship between accuracy and confidence for Top Match, Top-3, and baseline models.
Right: Distribution of predictions by confidence. A large number of predictions have high confidence, but a significant mass exists below
75% confidence.

An advantage of our probabilistic algorithm is the fact that each
predicted location has an associated confidence. As can be seen
when comparing the results for the random sample and the sample
of active subscribers in Table 2, predictions are considerably more
accurate when the location is predicted with high confidence. This
relationship is further explored in Figure 3a. Here, each subscriber
is assigned to a confidence bin based on the maximum predicted
probability from the inference algorithm. The average performance
of each bin is then plotted on the y-axis, for each of the four meth-
ods. All methods steadily improve as the confidence increases. The
distribution of these confidences is given in Figure 3b; while the
majority of predictions are made with high confidence, a significant
number of predictions are made with less than 50% confidence.

5.3 Performance improvements
and heterogeneity

As we have seen in Figure 3, the model performs significantly
better on queries where the confidence in the prediction is high.
We now investigate in greater detail the types of queries and types
of individuals for whom predictions are more accurate.

5.3.1 Active subscribers
An important feature of our algorithm is the fact that it is still

relatively accurate on populations who are not active users of the

mobile phone network. At the same time, and perhaps unsurpris-
ingly, we find that predictions for more active subscribers are con-
siderably more accurate. Figure 4a provides direct evidence of this
correlation (significant at p < 0.05). To construct the upper por-
tion of Figure 4a, we divide the population of subscribers into bins
based on the number of calls made in the previous month, randomly
sample 1,000 subscribers from each bin, then report the predictive
accuracy for each bin. The histogram on the bottom half of the
figure shows the call distribution of the at-large population.

Roughly 90% of the population makes 20 or fewer calls per day,
and it is this large subset for whom predictions are the least ac-
curate. Performance steadily increases as the sparsity in the data
decreases, to the point where our predictive accuracy is again close
to 100% for the limited subset of the population making 100 or
more calls per day. Unsurprisingly, this population of high-activity
subscribers is also the population for whom the algorithm reports
the highest confidence.

5.3.2 “Difficult” predictions
While the locations of some individuals are sometimes inher-

ently challenging to predict, we also find that the performance of
our algorithm depends heavily on the type of query being tested. In
particular, when the start and end points are separated by either a
large time span or a large spatial distance, the accuracy of the pre-



Figure 4: Performance improvements and heterogeneity. Predictive accuracy improves for different types of individuals and queries. The
top half of each figure shows the accuracy for the Top Match and Top-3 models as well as the two baselines; the bottom half of the figure
shows the fraction of the population in each respective bin. Left: For individuals who make a large number of calls, accuracy is higher.
Right: Performance is better when the geographic distance between the start and end towers is smaller.

diction degrades. In Figure 4b, we show the relationship between
predictive accuracy and the geographic distance between the start
and end points. While accuracy is highest for the vast majority of
queries where the geographic distance is less than 10 kilometers,
performance drops quickly for the small number of queries with a
larger distance. We find qualitatively similar results when we plot
the predictive accuracy against the length in hours between the start
and end sightings (results not shown).

These results are quite intuitive. When an individual travels a
long distance, there are often several routes that could be taken, and
even along a fixed path the speed of travel might vary. In addition,
because long trips are relatively rare, there are fewer individuals
in “the collective” on which to base predictions. Likewise, when a
longer interval of time passes between subsequent observations – as
is common with mobile phone use in many developing economies
– there is inherently more uncertainty in the individual’s location
between sightings.

6. DISCUSSION AND CONCLUSIONS
We have presented a model and algorithm for predicting the un-

known locations of individuals based on collective, historical pat-
terns of travel. Testing this algorithm on a large dataset of mo-
bile phone call detail records, we find that our “Top Match" al-
gorithm significantly out-performs a baseline based on the sub-
scriber’s most frequently visited location, and achieves modest im-
provements over a method that linearly interpolates the midpoint
between other known locations. Generalizing to a “Top-N" predic-
tion paradigm, our algorithm is over 90% accurate with N = 3 (we
avoid direct comparison of the Top-N method to the baselines as
the baselines would similarly perform better if they were allowed
multiple predictions).

In the sections above, we have highlighted some of the primary
advantages of this particular method: it performs well on pop-
ulations typical of developing countries, where the median sub-

scriber makes far fewer transactions than the median subscriber in
the global north; it is non-parametric, and does not rely on sec-
ondary knowledge of roads or other geographical features (though
as we see in Figure 2, it is capable of recovering these features from
the call data); and the predictions of the algorithm have associated
probabilities that indicate the relative confidence of the prediction.
Important to the effectiveness of this approach is the fact that the al-
gorithm incorporates information on trajectories of the collective,
for as noted above, data on any single individual is likely to be
sparse. Indeed, in our dataset, the median query has zero matches
from the individual’s past trajectories but 3,274 from the collective
(the respective means are 1.7 and 4649). Thus, while each individ-
ual match is very heavily weighted (α = 0.99), for any single query
the collective influence is still very strong. Perhaps more impor-
tantly, this method allows for predictions even in the large number
of instances when no matching information at the individual level
can be found.

Along with these strengths, this method has several limitations
that deserve mention, and which may provide fertile ground for fu-
ture work. First, it should be stated explicitly that this model works
well precisely because it relies on collective behavior when data
on any given individual is scarce. Thus, it uses a “wisdom of the
crowd” approach that may not be appropriate for certain individu-
als or trajectories. For instance, if a given individual likes to take
routes or shortcuts that are unknown to the collective, unless she
has used her phone consistently on those routes in the past the al-
gorithm is likely to incorrectly predict that she is taking the road
more travelled by her peers.

Second, this model is designed to predict “normal” behavior,
and is therefore not well suited to understand or model behavior
in times when the entire collective deviates from historical patterns
of movement. For instance, on days when unexpected events occur,
such as natural disasters or irregular holidays, this method will ex-



hibit a strong bias toward predictions more consistent with regular
patterns of travel.

Third, unlike some of the related work discussed in the introduc-
tion, where the goal is to predict a future unknown location given
only past trajectories, the method we discuss is designed to predict
missing locations when both the start-point and the end-point are
known – a problem that is undoubtedly more tractable. The pre-
diction of future locations has important applications in developing
countries, and slight adaptations of our framework may work well
in such contexts.2 However, our focus is on the reconstruction of
historical trajectories because many of the motivating applications
discussed in the introduction have this precise need, from measur-
ing migration and mobility to modeling the spread of infectious
diseases.

Lastly, issues of privacy and anonymity, while not the topic of
this paper, cannot be ignored altogether. The premise of this project
– that there can be humanitarian value in being able to predict the
unknown location of an individual when she is “off the grid” – can
easily be flipped into a scenario in which a nefarious actor might
use such techniques for ill. We take some solace in the idea that
in our application the accuracy can never exceed the granularity of
a mobile phone tower, but also realize that in principle the model
could be applied to data of higher resolution. In the end, however,
we do believe that the possible gains from judicious use of these
methods outweigh the possible costs of misappropriation.

In future work, we see many immediate areas for improvement
and extension. In particular, the rudimentary parameterization of
the similarity metrics as binary functions (Section 3.2) is a crude
approximation that should be made more flexible. Allowing for
a continuous measure of similarity between individuals instead of
a parameter that is weighted α for the same individual and (1−
α) for different individuals, would be a natural next step. Such
similarity could be assessed based on direct connections between
individuals or by similarity of past travel patterns. Likewise, the
algorithm would likely benefit from a more flexible measurement
of the similarity in the temporal features of two trajectories. These
shortcomings and obvious next steps notwithstanding, we hope that
this method can serve as the basis for algorithms better suited to
modeling the mobility of heterogeneous populations in resource-
constrained environments.
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