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Abstract

An increasing number of decisions are guided by machine learning algorithms. In
many settings, from consumer credit to criminal justice, those decisions are made
by applying an estimator to data on an individual’s observed behavior. But
when consequential decisions are encoded in rules, individuals may strategically
alter their behavior to achieve desired outcomes. This paper develops a class
of estimator that is stable under manipulation, even when the decision rule
is fully transparent. We explicitly model the costs of manipulating different
behaviors, and identify decision rules that are stable in equilibrium. This
approach also makes it possible to quantify the performance cost of making a
decision algorithm transparent. Through a large field experiment in Kenya, we
show that decision rules estimated with our strategy-robust method outperform
those based on standard supervised learning approaches.
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1 Introduction

An increasing number of important decisions are being made by machine learning

algorithms. Algorithms determine what information we see online; who is hired, fired,

and promoted; who gets a loan, and whether to give bail and parole. In the typical

machine learning deployment, an individual’s observed behavior is used as input to

an estimator that determines future decisions.

These applications of machine intelligence raise two related problems. First, when

algorithms are used to make consequential decisions, they create incentives for people

to ‘game’ the rule: when agents understand how their behavior affects decisions,

they may alter their behavior to achieve the outcome they desire. Second, society

increasingly demands a ‘right to explanation’ about how algorithmic decisions are

made (Goodman and Flaxman, 2016; Barocas et al., 2018). For instance, the European

Union’s General Data Protection Regulation mandates that “meaningful information

about the logic” of automated systems be available to data subjects (European Union,

2016). However, such transparency increases the scope for gaming: the more clearly

that agents know how their behavior affects a decision, the easier it is to manipulate.

The problem of manipulation stems from the fact that the standard estimators

used to construct decision rules assume that the relationship between the outcome

of interest and human behaviors is stable. But this assumption tends to be violated

as soon as a decision rule is implemented, and agents have incentives to change their

behavior to achieve more favored outcomes. When decision rules are gamed, they can

produce decisions that are arbitrarily poor or unsafe, which can undermine the use of

machine learning in critical applications.

There are two common approaches to deal with this problem. The first, familiar

to economists, restricts models to predictors that are presumed to have a theoretical

relationship to the outcome of interest.1 This simple intuitive approach amounts to

having a dogmatic prior that the cost of manipulation is either infinite (for included

predictors) or zero (for excluded predictors). However, most behaviors are manipulable

at some cost, and it may be difficult to assess manipulability in new domains, or

1An extreme version may restrict to predictors that causally affect the outcome of interest
(Kleinberg and Raghavan, 2019; Milli et al., 2019). This may make manipulation desirable (for
example, an exam may induce students to study and learn general knowledge) but can reduce
predictive performance.
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in modern contexts that can have thousands of predictors. Thus in practice many

implementations use a second approach, which we refer to as the ‘industry approach.’

This keeps decision rules secret, and periodically updates the model to account for

changes in the relationship between features and outcomes (Bruckner and Scheffer,

2011). However, such ‘security through obscurity’ exposes current applications to

substantial risk (NIST 2008). If the stakes are high enough, people eventually learn—

and exploit—a system’s weaknesses, and may cause great harm at unanticipated

times. This approach also limits the use of machine learning in settings where secrecy

cannot be maintained (e.g., when regulations mandate transparency) or feedback is

noisy or delayed (e.g., it may take years for a social media platform to learn that its

recommendation algorithm was gamed by foreign actors). There is also no guarantee

that the back-and-forth between estimation and agents will reach equilibrium, or if it

does, that such an equilibrium will be desirable.

This paper develops a different approach. We explicitly model the costs that

agents incur to manipulate their behavior, and embed the resulting game theoretic

model within a machine learning estimator. This allows us to construct decision

rules that anticipate strategic agents, and which make good decisions even when the

rule is fully transparent. We demonstrate, using Monte Carlo simulations, that our

‘strategy-robust’ estimator performs better than standard models when these costs

are known, even if costs are misspecified. We then test the theory in a real world

environment, through an incentivized field experiment with 1,557 people in Kenya.

We use the experiment to elicit costs of manipulating behavior, and to show that the

strategy-robust approach leads to more robust machine decisions.

The paper is organized into two main parts. The first part develops a method to

estimate strategy-robust decision rules that are stable under manipulation. We consider

a supervised machine learning framework for a policymaker making a decision yi for

each individual i. Each individual prefers a larger decision yi. We observe a training

subset of cases that possess both features xi and optimal decisions yi. The policymaker

seeks to estimate a decision rule ŷ(xi) for cases in an implementation subset where

only features xi are observed. Standard methods assume that xi’s are fixed: training

and implementation samples of (xi, yi) are drawn from same distribution. Our method

allows individuals to adjust behavior in response to the incentives generated by the
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decision rule; that is, xi(ŷ(·)) is a function of the decision rule. Thus, while the

training samples come from an unincentivized distribution (xi(0), yi); implementation

samples come from (xi(ŷ(·)), yi). Characterizing this latter distribution requires a new

object: the distribution of the elasticity of behaviors xi when incentivized. We assume

individuals incur quadratic costs for manipulating behavior, and that these costs can

be parametrized by a cost distribution C. We describe several methods to estimate

manipulation costs.

To sharpen intuition, we derive results for linear decision rules of the form ŷ(x) =

βx. The resulting estimator takes a simple nonlinear least squares form.2 Our method

introduces a new notion of fit, which has analogues to other common linear regression

approaches. Ordinary least squares (OLS) maximizes fit within sample; two stage

least squares (2SLS) sacrifices fit within sample to estimate coefficients that have

causal interpretations; penalized least squares (such as LASSO and ridge) sacrifice

within-sample fit to better generalize to other samples drawn from the same population.

Our method sacrifices fit within sample to maximize fit in the counterfactual where

the decision rule is used to allocate resources, and agents manipulate against it.

Our estimator is an example of a class of estimator that maximizes counterfactual

fit–predictive fit in a counterfactual state of the world.3 Our method nests standard

linear estimators (OLS and penalized least squares), and we regularize towards them

based on the amount of manipulation observed in the data.

We use Monte Carlo simulations to compare this strategy-robust approach to com-

mon alternatives. OLS can perform extremely poorly when agents behave strategically.

The industry approach, which periodically retrains the model, may not converge, or if

it does, may do so slowly or to an undesirable equilibrium. By contrast, our method

adjusts the model to anticipate manipulation, in each subgame. In simulations where

agents respond to the decision rule and manipulation costs are known, our approach

exceeds the performance of other estimators. Our approach can exceed the perfor-

mance of others even if manipulation costs are misspecified for some cases. Under

certain parameters, the presence of manipulation can improve predictive performance,

if it signals unobservables associated with the outcome of interest (in the spirit of

2Although many machine learning implementations use complex nonlinear models, peoples’ beliefs
about these models tend be simple, and may be well approximated by linear functions.

3This is analogous to the concept of performative prediction suggested by Perdomo et al. (2020).
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Spence, 1973). In these cases, our method emphasizes features that are manipulable

by the types to be screened in, but not by those to be screened out.

In the second part of the paper, we implement and test our method in the context of

a field experiment in Kenya. This experiment allows us to compare the performance of

the strategy-robust estimator to standard machine learning algorithms in a real-world

environment. Specifically, we built a new smartphone app that passively collects

data on how people use their phones, and disburses monetary rewards to users based

on the data collected. The app is designed to mimic ‘digital credit’ products that

are spreading dramatically throughout the developing world (Bharadwaj et al., 2019;

Brailovskaya et al., 2021). Digital credit products similarly collect user data, and

convert it into a credit score using machine learning, based on the insight that historical

patterns of mobile phone use can predict loan repayment (Björkegren, 2010; Francis

et al., 2017; Björkegren and Grissen, 2019). However, as these systems have scaled,

manipulation has become commonplace as borrowers learn what behaviors will increase

their credit limits (McCaffrey et al., 2013; Bloomberg, 2015).4

This field experiment produces several results. First, consistent with prior work, we

find that a person’s mobile phone usage behaviors (xi(0)) have a predictive relationship

with their characteristics, such as income and intelligence (Raven’s matrices).5

Second, we structurally estimate C in our model; that is, the distribution of costs

of manipulating a variety of observed behaviors xi. These estimates are identified

through a series of randomly assigned experiments that offer financial incentives to

alter behaviors observed through the app. For example, participants may be paid

to increase the frequency of outgoing calls in a given week, or decrease the number

text messages they receive. The average weekly payouts are designed to be similar in

magnitude to the typical digital credit loans in Kenya at the time ($4.80 in Bharadwaj

et al. (2019)). The pattern of costs we estimate is intuitive: for instance, outgoing

communications are less costly to manipulate than incoming communications, and

text messages, which are relatively cheap to send, are more easily manipulated than

calls. We also find that complex behaviors (such as the standard deviation of talk

4A recent survey in Kenya and Tanzania found that one of the top five reasons people report
saving money in digital accounts is to increase the loan amount qualified for (FSD Kenya, 2018).

5Related work has used mobile phone data to predict income and wealth (Blumenstock et al.,
2015; Blumenstock, 2018), gender (Blumenstock et al., 2010), and employment (Sundsøy et al., 2016).
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time) are less manipulable than simpler behaviors (such as the average duration of

talk time).

Third, we find that ‘strategy-robust’ decision rules, which account for the costs of

manipulation, perform substantially better than standard machine learning algorithms.

We make this comparison by providing participants financial incentives to use their

phones like a person of a particular type. For instance, some people receive a message

that says, “Earn up to 1000 Ksh if the app guesses that you are a high income earner,

based on how you use your phone,” while others receive messages that offer rewards

for acting like an ‘intelligent’ person, and so forth. Across a variety of such decision

rules, we show that classifications made with the strategy-robust algorithm are more

accurate than classifications from standard algorithms.

Finally, we use our method to estimate the performance cost of algorithmic

transparency, incurred to the policymaker for disclosing the details of the decision

rule. In the experiment, we experimentally vary the amount of information subjects

have about the decision rule, and show that the relative performance of the strategy-

robust estimator increases with transparency. Transparency reduces the predictive

performance of standard estimators by 17% on average, but reduces the strategy-robust

estimator’s performance by only 6%. In our setting, the performance cost of moving

from an equilibrium where decision rules are secret to an equilibrium where they

are disclosed is less than 8%. Our model also allows policymakers to bound this

equilibrium cost of transparency even without disclosing decision rules to the world.

Thus, our paper provides a framework for designing decision rules that are robust

to manipulation. The empirical approach we take is similar to how organizations hire

‘white hat’ hackers to uncover and repair security weaknesses before they are exploited.

It can add the most value in settings where stakes are high; where policymakers

have limited evidence on historical manipulation; where decision rules cannot be

kept secret; or where updating decision rules is costly or slow. That is, it may be

useful for applications beyond the dominant tech firms, such as governments. It may

be less successful in contexts where manipulation costs are difficult to model due

to unpredictable shifts, or where models cannot be decomposed into manipulable

components. We consider the linear case, and describe how our approach could be

applied to nonlinear models.
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1.1 Connection to Literature

Agents game decision rules in a wide variety of empirical settings. Manipulation has

been documented in contexts ranging from New York high school exit exams (Dee

et al., 2019) and health provider report cards (Dranove et al., 2003), to pollution

monitoring in China (Greenstone et al., 2019), to fish vendors in Chile (Gonzalez-Lira

and Mobarak, 2019). In the online advertising industry, firms spend many millions

of dollars each year on search engine optimization, manipulating their websites in

order to be ranked higher by search engine algorithms (Borrell Associates, 2016). A

quick Google search suggests over 50 thousand different websites (and 3,000 YouTube

videos) contain the phrase “hack your credit score.”

Indeed, the dilemma of manipulation is not new. Goodhart (1975), in what has

since become referred to as ‘Goodhart’s Law’, noted that once a measure becomes

a target, it ceases to be a good measure. Lucas (1976) also famously observed that

historical patterns can deviate when economic policy changes. More broadly, our

approach connects with literatures in both economics and computer science.

Our problem can be viewed as a mechanism design problem. Canonical signaling

models (Spence, 1973) rely on a single crossing condition to allow full revelation

of individual types. In our setting, like the settings of Frankel and Kartik (2019,

2020) and Ball (2019), there are two forms of heterogeneity: types xi and the costs

of manipulating behavior Ci. Frankel and Kartik (2019) show that unobserved

heterogeneity in manipulation costs ci ‘muddles’ the relationship between a behavior

xi and type xi, causing the single crossing condition to fail. That paper shows that

muddling reduces the information available in a market. Ball (2019) extends that

framework to multiple dimensions of behavior, and in a theoretical model similar to

ours characterizes and proves the existence of an equilibrium. That paper, as well as

Frankel and Kartik (2020), suggest that committing to a subgame perfect solution like

ours can lead to better outcomes than repeated best responses. Also related, Eliaz and

Spiegler (2019) show that incentive problems can theoretically arise even in a setting

where agents and policymaker have identical objective functions, if the policymaker

adjusts their objective function with penalization. Relative to this work, our paper

builds a model that can be empirically estimated, which allows us to probabilistically

separate types and costs.
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Our paper is also related to the problem in public finance of setting taxes in

environments where agents adapt their behaviors. Mirrlees (1971) considers taxes as a

function of earnings, and faces the central problem that taxation induces a behavioral

response. Akerlof (1978) suggests that conditioning on additional attributes that are

harder to manipulate (‘tags’) can improve efficiency. Our method evaluates predictors

with the inverse of the matrix of the costs of manipulating them, in a manner similar to

Ramsey (1927). The market design literature has also considered designing allocation

algorithms in the face of strategic reporting (Agarwal and Budish, 2021).

Our experimental application also connects to work on poverty targeting. In devel-

oping countries and other settings where income is difficult to observe, policymakers

commonly determine program eligibility (yi) based on easily observable characteristics

or behaviors (xi) (Hanna and Olken, 2018), and more recently, based on how people

use their phones (Aiken et al., 2021). The policymaker may infer a household’s type

based on the levels of these variables, or, implicitly, on how they change in response to

incentives.6 There is evidence that such decision rules induce households to manipulate

their observable features. For instance, Banerjee et al. (2018) find that adding a

question about flat screen TV ownership to a census caused people to underreport

ownership by 16% on a follow-up survey, in order to appear less wealthy.7

Finally, our approach relates to existing strands in the computer science literature.

The theoretical computer science community has recently considered this problem as

one of ‘strategic classification’ (Hardt et al., 2016; Dong et al., 2018). This literature

is focused primarily on obtaining computationally efficient learning algorithms, and

how strategic behavior can affect statistical definitions of fairness (Hu et al., 2019;

Milli et al., 2019). In computer security, ‘adversarial machine learning’ considers how

strategic adversaries can systematically undermine supervised learning algorithms.8

Also related is the concept of ‘covariate shift’, which considers scenarios where a test

6Our method thus includes this latter case of self-targeting (Nichols and Zeckhauser, 1982; Alatas
et al., 2016), which identifies beneficiaries based on willingness to engage with a costly “ordeal.”

7In other examples from the development literature, Camacho and Conover (2011) find that
after a program eligibility decision rule was made transparent, it was manipulated by an amount
corresponding to 7% of the National Health and Social Security budget. They note, “there is anecdotal
evidence of people moving or hiding their assets, or of borrowing and lending children.” And Niehaus
et al. (2013) find that when implementing agents can be corrupted, considering additional poverty
indicators can worsen the targeting of benefits, by making it more difficult to verify eligibility.

8For instance, Bruckner and Scheffer (2011) study adversarial prediction when the agent acts in
response to an observed predictive model, with an application to spam filtering.
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distribution differs from the training distribution (Sayed-Mouchaweh and Lughofer,

2012). The manipulation we consider induces the conditional distribution y|x to

change endogenously when action is taken based on the estimated relationship.

Thus, papers from a variety of sub-literatures have confronted the notion that

agents will act strategically when their actions are used to determine allocations.

Relative to prior work, our paper makes two main contributions. First, we develop

an equilibrium model of decision rule manipulation that can be estimated, which

yields rules that function well under manipulation even when fully transparent. And

second, to our knowledge for the first time in any literature, we design and implement

a field experiment that stress-tests such decision rules in a real-world setting with

incentivized agents.

2 Theory

This section introduces the model underlying our estimator, and demonstrates its

intuition with simulations.

2.1 Model

A policymaker observes a training sample, i.e., a subset of cases that possess both

features xi and optimal decisions yi. The policymaker also obtains information on the

costs of manipulating features, which will be detailed later. The policymaker would

like to estimate the parameters of a decision rule ŷ(xi) for cases in an implementation

subset where only features xi are observed, and may be manipulated.

The policymaker has a preferred action yi for each individual i, denominated in

units of individuals’ utility. The action yi can be projected onto i′s bliss behavior xi

by the equation yi = a+ b′xi + ei, with ei ⊥ xi representing idiosyncratic preference.

However, the policymaker only observes the individual’s actual behavior xi, which

may differ from their bliss level xi. They select a deterministic decision rule:

ŷ(xi) = α + β′xi

Individuals can manipulate their behavior xi away from their bliss level xi at some
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cost. Each individual earns utility from the policymaker’s decision, minus this cost:

ui(ŷ,xi) = ŷ(xi)− ci(xi, xi)

For simplicity, we consider the case where the utility from the decision exactly

coincides with the policymaker’s prediction, though this approach could be extended

to more general utility functions.9

Individuals i are heterogeneous in two respects: bliss behaviors xi and gaming

ability γi. Manipulation costs are quadratic:

ci(xi, xi) =
1

2
(xi − xi)

′Ci(xi − xi)

for matrix Ci:

Ci =
1

γi


c11 · · · c1K
...

. . .
...

cK1 · · · cKK


Some behaviors may be harder to manipulate than others, either by themselves (the

diagonal ckk) or in conjunction with other behaviors (the off-diagonals ckj). Different

people may also find it easier or harder to manipulate (γi); for example, based on a

person’s tech savviness or opportunity cost of time.

When i knows the decision rule ŷ(xi) and receives benefits according to it, first

order conditions imply they will manipulate behavior to level:

x∗i (β) = arg max
xi

ui(ŷ,xi) = xi+C
−1
i β

When behavior is not incentivized (β = 0), optimal behavior equals the bliss

level (x∗i (0) = xi). However, as β moves away from zero, behavior moves in the same

direction, down-weighted by the cost of manipulation (highlighted in blue).

9That is, we consider the case where the utility of the decision u(ŷ) = ŷ, to match our experimental
setting. Under more general utility functions, our model could be considered a linear approximation.
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Decision rules

If, during implementation, the policymaker knew each individual i’s cost matrix Ci,

they could invert any manipulation to infer the individual’s type. However, each

individual’s cost matrix is not typically known, which leads to information loss (Frankel

and Kartik, 2019). We assume that during implementation the policymaker only

observes behavior xi, but during model training the policymaker also obtains some

knowledge about costs, believing i’s costs are distributed Ciq ∼ Ci for a random

draw q. We demonstrate a way to recover these beliefs using experiments, and in

later sections consider alternate approaches to estimating these costs (such as polling

domain experts or deriving from first principles).

The policymaker faces expected squared loss:

L (α,β) = Ei,q
[(
yi − ŷ

(
x̂iq
(
ŷ(·)
)))2

+M(·)
]

where x̂iq(β) = xi+C
−1
iq β. The first term in the above expectation represents the

squared loss in the counterfactual where β is implemented and agents manipulate

behavior. This accounts for the fact that implementing β will induce behavior to

shift away from its distribution in the training data. If the policymaker cares about

the costs that individuals incur manipulating behavior, they may include additional

penalty M(·).
Our strategy-robust decision rule is given by:

βSR = arg min
α,β

Eq

[
1

N

∑
i

(
yi − α− β′(xi+C−1iq β)

)2
+ . . .

]
(1)

which deviates from ordinary least squares by the manipulation term C−1iq β. Addi-

tional terms ‘. . .’ may include M(·) or regularization terms Rλdecision(·).

Discussion

Our estimator coincides with nonlinear least squares in the simple case where the

policymaker knows costs in the training sample, only cares about targeting performance

(M(·) ≡ 0), and there are no additional regularization terms (R(·) ≡ 0). First order
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conditions for β are then given by:

Ei,q
[
εi (β, x̂iq(β))

(
∂εi
∂β

′
+
∂εi
∂x

′∂x̂iq
∂β

)]
= 0

εi(β,x) = yi − α− β′x

where the first term captures how β affects fit holding xi constant, and the second

term accounts for manipulation: the influence of β on xi. This results in moment

condition:

Ei,q [x̂iq(β) · εi(β, x̂iq(β))] = −Ei,q
[
C−1iq β · εi(β, x̂iq(β))

]
(2)

This contrasts with standard estimators, which do not account for manipulation.

For example, ordinary least squares (OLS) selects β such that errors are orthogonal

to observed features in the training data: Ei [xi · εi(β,xi)] = 0. Our estimator differs

in three ways.

First, it anticipates the best response levels of behaviors—the left hand side is akin

to OLS except with counterfactual behaviors x̂iq(β). When these behaviors cannot

be manipulated (Ci →∞), our estimator corresponds to OLS. If all people have the

same gaming ability, manipulation may simply shift behaviors, without damaging their

information content. Alternately, if desired targets find it easier to game, their shift

in behavior can make them more distinguishable, and manipulation itself becomes a

signal. Or if desired targets find it harder to game, manipulation may confound the

desired targets with people who have high ability to game.

Second, it anticipates the best response spread of behaviors. In practice, there will

be uncertainty about each i’s gaming ability and thus x̂i(β). The moment expectations

are taken over the distribution of gaming ability, so this variance will tend to attenuate

coefficients, accounting for how manipulation ‘muddles’ information.10

Third, it anticipates the gradient of those behaviors: how they would shift in the

subgame if an alternate β were selected. This is captured in the right hand side, which

10To obtain a simple, estimable model, our parametrization allows the variance in manipulability
of behavior k to scale with its manipulation cost.
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deviates from orthogonality. OLS assumes that xi will remain fixed, and in that sense

computes a one-step best response. Even if one obtained data from a strategy-robust

equilibrium (yi,x
∗
i (β

SR)), OLS will not generally yield the strategy-robust estimate.

β = βSR is a solution to Ei
[
x∗i (β

SR)εi(β,x
∗
i (β

SR))
]

= 0 only if the right hand side

of Equation (2) is zero. In contrast, our estimator anticipates that a change in β will

induce behavioral responses. This results in a subgame-perfect equilibrium, which

maximizes performance in the subgame where the resulting rule is manipulated. This

relies on a commitment to not exploit all of the partial equilibrium correlations in the

observed data.11

When the policymaker cares about not only the resulting allocation, but also

the manipulation costs that individuals incur, this is captured by the term M(·)A
policymaker that is narrowly concerned with its own objective may thus select different

decision rules from one that maximizes social welfare (a profit maximizing firm may

be satisfied with an equilibrium where all individuals expend welfare gaming a test; a

social planner may not be).

To reduce overfitting in small samples, one may also include common forms

of regularization; for example, RLASSO
λdecision

(β) = λdecision
∑

k |βk| or Rridge
λdecision

(β) =

λdecision
∑

k β
2
k , for regularization hyperparameter λdecision. Under these regularization

terms, when M(·) ≡ 0 and Ci →∞ the resulting estimator corresponds to LASSO or

ridge, respectively.

2.2 Intuition

We demonstrate the method with Monte Carlo simulations. This involves deriving

desired payments y = a+ b′x + e, then assessing the decision rules ŷ(x) generated

with different estimators. To focus on the intuition, this section assumes that the

policymaker is able to recover the manipulation costs of each individual in its training

sample (Ciq ≡ Ci), but not in implementation.

Comparative statics

We consider a case where x1 is more predictive than x2 in baseline behavior, but would

be easily manipulated if used in a decision rule (b1 > b2 but c11 � c22).

11See Ball (2019) and Frankel and Kartik (2020) for a theoretical discussion of this distinction.
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Figure 1: Common vs. Strategy Robust Estimators

(a) βOLS (b) βLASSO (c) βSR
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OLS performance deteriorates when behavior can be manipulated. (b) LASSO penalization favors
x1, which will be manipulated as soon as the decision rule is implemented. (c) Our method
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xi
iid∼ N

(
0,

[
1 0
0 1

])
, b =

[
1.4
1

]
, Ci = 1

γγhet
i

[
4 0
0 32

]
, 1
γhet
i

iid∼ Uniform [0, 10],

ei
iid∼ N (0, 0.25). Squared error measured on an out of sample draw from the same population,

incentivized to that decision rule.
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Figure 1 compares our method to OLS and LASSO, which both place most weight

on x1. OLS maximizes predicted performance within the unincentivized sample

(xi(0), yi); as shown in Figure 1a, it performs poorly as manipulation becomes easier.

Figure 1b shows that for a given cost of manipulation, LASSO shrinks these coefficients.

However, standard regularization does not consider manipulation, and LASSO selection

does the wrong thing: it kicks x2 out of the regression first. In contrast, our method

considers how predictive features will be in equilibrium when the decision rule is

implemented: (xi(β), yi). As shown in Figure 1c, when manipulation costs are high,

our method approaches OLS; as manipulation becomes easier, our method substantially

penalizes x1.

The Supplemental Appendix (section 4.1) presents additional comparative statics.

If each feature is equally costly to manipulate (cjl ≡ ckl), our method shrinks them

together, similar to ridge regression. If all individuals have the same gaming ability

(γiq ≡ γ), then manipulation shifts behavior uniformly; although this does not affect

predictive performance, individuals may incur substantial costs manipulating.12

Performance

Table 1 shows the results of an example Monte Carlo simulation, chosen to contrast

our method with standard approaches. In this simulation, type x1 has a large weight

in the desired payment (b1 = 3) relative to the other two dimensions (b2 = b3 = 0.1);

however, behavior x1 is much easier to manipulate (c11 = 1 vs. c22 = 2 and c33 = 4).

In this environment, OLS considers the static relationship in the unmanipulated

data. This rule would perform well if behavior were fixed (the ‘no manipulation’

column); however, once consumers adjust to the rule, it makes terrible decisions (the

‘manipulation’ column).

A common ‘industry approach’ involves retraining the model periodically. Thus,

as shown in Panel B of Table 1, if we observe consumers’ new behavior and reestimate

OLS, we obtain βOLS(2), which places negative weight on the manipulated x1. However,

once consumers respond, the decision rule performs poorly. If we repeatedly allow

12As the cost of manipulating one particular behavior (c22) decreases, it is penalized, and weight
is shifted to other behaviors. The method also can exploit cost interactions, penalizing behaviors
that make it easier to shift other predictive behaviors (akin to Ramsey (1927) taxation). When
manipulating x1 makes it easier to manipulate x2 (c12 sufficiently negative), our method further
reduces weight on x1.
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Table 1: Manipulation Can Harm Prediction (Monte Carlo)

Decision Rule Performance (squared loss)

β1 β2 β3 α No manip. Manipulation

Panel A: Data Generating Process

bDGP 3.00 0.10 0.10 0.20 0.27 3745.05

Panel B: Standard Approaches

βOLS 3.04 0.06 0.12 0.21 0.27 3961.23

Industry Approach

βOLS(2) 0.06 2.09 −1.68 −0.80 3.28 625.76

βOLS(3) 3.11 −0.04 0.22 0.17 0.27 4332.21

βOLS(4) 0.12 2.08 −1.67 −0.76 3.07 619.06
...

βOLS(1001) 3.74 −1.34 1.57 −0.39 1.38 11 611.88

βOLS(1002) 0.70 1.86 −1.53 −0.40 1.67 565.38

Panel C: Strategy-Robust Method

βSR 0.50 0.54 −0.10 −1.81 9.16 1.94

If policymaker knows only the distribution of costs between individuals:

βSRCiq=bootstrapi(Ci) 0.31 0.49 0.15 −0.74 7.00 3.38

If costs are misestimated:

βSRCiq≡2·diag(Ci) 0.66 0.72 −0.35 −1.57 6.89 10.83

Notes: Monte Carlo simulation results. Panel A shows the coefficients that relate the outcome (y)
to behaviors (x) under the data generating process (DGP). Panel B shows coefficients from OLS.
Panel C shows coefficients estimated with the strategy-robust method with costs known during
training (Ciq ≡ Ci); with heterogeneous costs bootstrapped between individuals over 10 draws; and
with costs mis-estimated to be double and to omit off-diagonals. Performance is assessed on the
same sample of individuals under behavior with and without manipulation. Parameters:

Ci =
1
γi

 1.0 0.1 0.2

0.1 2.0 0.8

0.2 0.8 4.0

 , x
iid∼ N

0,

 1.0 1.0 0.1

1.0 2.0 1.0

0.1 1.0 1.0


, γi =

{
1 xi1 ≤ 0.2

10 xi1 > 0.2
, ei

iid∼ N(0, 0.25)
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individuals to best respond, and then estimate the decision rule βOLS(r) using data

from the prior period (r − 1) (iterative best response), this process continues to make

poor decisions. In this case, the process does not converge; it alternates between

decision rules that place high and low weight on x1.
13 Thus, standard approaches can

perform poorly even in stable settings with perfect information. In settings with noise

or frictions in learning, a system might unexpectedly and catastrophically fail when

the other side discovers how to exploit it.14

In contrast, our strategy-robust estimator (βSR) penalizes the easily manipulable

behavior x1 and shifts weight to behaviors that are harder to manipulate (x2 and x3).

It anticipates manipulation off-path, sacrificing performance in the environment in

which it is trained (in-sample, no manipulation) for performance in the counterfactual

where there is manipulation. When individuals manipulate as described in the model,

our estimator exceeds the performance of other estimators.15

Our method performs similarly well when the policymaker knows only the distri-

bution of costs C and not the cost of each individual in its training sample (Panel C

of Table 1). The method can also reduce risk even if manipulation costs are misesti-

mated. For instance, the last row considers the case where all off diagonal elements

are erroneously set to zero, and the estimated costs of manipulation are two times

too large. Performance deteriorates relative to the case where we know the true cost

matrix, but our method still outperforms OLS in the presence of manipulation.

Manipulation can improve performance

Manipulation can improve performance, if ease of manipulation (γi) is correlated with

the outcome (yi). In that case, manipulation represents a signal of the underlying

type, as in Spence (1973), and applications of self-targeting (Nichols and Zeckhauser,

1982). We provide an example in the Supplemental Appendix (Section 4.2) where

manipulation improves the performance even of näıve estimators. Our method increases

13These oscillations can be dampened by using cumulative data from all prior periods, as shown
in the Supplemental Appendix (section 4). That still takes several iterations to converge to a less
performant equilibrium.

14For example, Gonzalez-Lira and Mobarak (2019) find that increased enforcement of a ban on
selling endangered fish led vendors to learn about, and more effectively undermine, the decision rule.

15The strategy-robust estimator can also be combined with industry approach by using the strategy-
robust approach first, then iteratively retraining, as shown in the Supplemental Appendix (section
4).
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the coefficient on the manipulated behaviors to better exploit the information contained

in manipulation, and thus further improves performance. In that sense, if different

subgroups in a population (like the rich or poor) are differentially able to manipulate

behavior (Hu et al., 2019), our method can utilize that correlation to bring allocations

closer to the policymaker’s objective.

3 Estimation

This section describes how the strategy-robust model can be estimated with experi-

mental data. We will assume, for now, that it is possible to experimentally incentivize

individuals to manipulate different behaviors.16 Specifically, for each individual i, we

observe multiple time periods t ∈ Ti. Each period we assign i to a decision rule which

pays out based on their behavior that period: ŷit(xit) = αit + β′itxit. We designate

‘control’ periods Tcontroli during which behaviors are not incentivized: βit ≡ 0. In

‘treatment’ periods Ttreatmenti one behavior k ∈ 1...K is drawn at random and incen-

tivized by disclosing a rule that pays βitk 6= 0 for each unit of behavior k but not for

other behaviors: βitj = 0 for j 6= k.

In period t, we allow an individual to deviate from bliss behavior due to manipula-

tion, or shocks that are common (µt) or individual-specific (εit):

x∗it(βit) = xi + C−1i βit + µt + εit (3)

where both components are mean zero: Eµt = 0 and Eεit = 0.17

We estimate strategy-robust decision rules in two steps.

16Note that such a procedure could still induce meta-manipulation: if training users had preferences
over the algorithm that implementation users ultimately faced, they could pretend to make some
behaviors more or less manipulable. We expect incentives to do this to be small, and that these
correlations are sufficiently complex that it is unlikely that users would know which direction to
game their training behavior. In extensions we discuss alternate approaches to measuring costs that
would be robust to this concern.

17This arises from the utility function uit = ŷit(xit)− ci(xit, xi) + (µt + εit)
′Ci(xit − xi).
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3.1 Primitives

We first estimate primitives: types x, cost parameters ω and C−1, and the distribution

of unobserved gaming ability V .

Types

We estimate types (x) and time period fixed effects (µ) from control periods, using

the ordinary least squares regression:

xit = xi + µt + εit (4)

including only time periods where β = 0 (in which people act as their types).

Costs

We parameterize the cost matrix as:

Ciq =
1

γiq
· C

allowing heterogeneity by behavior, and by individual:

γiq = e−ω
′zi + vq

Individual gaming ability can vary with characteristics zi (observed in the training

sample but not in implementation), and due to unobserved heterogeneity vq ∼ V

(where Evq = 0).

We estimate C and ω using experimental variation in incentives and a general

method of moments (GMM) loss function. We impose x and µ. We limit the potential

to overfit using two adjustments. First, we impose the constraint that behaviors

move in the direction they are incentivized: cjj > 0. Second, we penalize the ease of

manipulation towards zero (cost towards infinity), which regularizes towards standard

methods (OLS/LASSO/etc). We use ridge style penalization, allowing separate

hyperparameters for diagonal and off-diagonal costs (λcosts = {λcostsdiagonal, λ
costs
offdiagonal}).

In our application we will penalize off diagonal elements to zero because of noise in

estimating them, and use three-fold cross validation to select λcostsdiagonal.
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We recover the distribution of unobserved gaming ability V by shrinking and then

shuffling the gaming ability residuals. For more details, see Appendix A1.

3.2 Decision Rules

Given these primitives, a strategy robust decision rule is given by:

βSR = arg min
α,β

[
1

N

∑
i

[
1

Q

∑
q

[
yi − α− β′(xi + C−1iq β)

]2
+Rλdecision

decision (β,y,Cq)

]]

for Q random draws of the cost matrix Ciq, where draws vq ∼ V are treated as

random effects. This loss includes any regularization term added to the decision

rule itself Rλdecision(·); we set the regularization hyperparameter λdecision with cross

validation in the unmanipulated baseline sample, where we have more data.

4 Experiment

We designed a field experiment to test the performance of our strategy-robust estimator

in a real-world setting. Design started in 2017. Working with the Busara Center for

Behavioral Economics in Nairobi, we developed and deployed a new smartphone-based

application (‘app’) to 1,557 research subjects. The app was designed to mimic key

features of ‘digital credit’ apps that are quickly transforming consumer credit in

developing countries (Francis et al., 2017). In Kenya, at the time of our study, CGAP

(2018) estimates that 27% of all adults had an outstanding ‘digital credit’ loan.

This section describes the app and experimental design; estimates costs of manipu-

lation and derives strategy-robust decision rules using our method; and compares the

performance of these new estimators to traditional learning algorithms. Our design

was pre-specified in a pre-analysis plan registered in the AEA RCT registry under

AEARCTR-0004649.
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4.1 Experimental design and smartphone app

Our experiment is intended to create incentives similar to those of a digital credit

lending app. These apps run in the background on a smartphone, and collect data

on phone use (including data on communications, mobility, social media behavior,

and much more). Digital credit apps use this information to allocate loans to people

who appear creditworthy (i.e., for whom ŷi exceeds some threshold; Björkegren

(2010); Björkegren and Grissen (2019)). Since financial regulations prevented us from

actually underwriting loans to research subjects, we instead focused on analogous

problems where a decisionmaker wishes to allocate resources to individuals with

specific characteristics—for instance, by paying individuals who have a certain income

level, or other characteristic (e.g., intelligence, level of activity, education).18

Smartphone app

The ‘Smart Sensing’ app we worked with Busara to build has two key features. First,

it runs in the background to capture anonymized metadata on how individuals use

their phones, such as when calls or texts are placed, which apps are installed and used,

geolocation, battery usage, wifi connections, and when the screen was on. In total,

we extract over K̄ > 1, 000 behavioral indicators (“features”). Second, it delivers

weekly “challenges” to users (see Figure 2). These challenges appear on the user’s

phone, and provide financial rewards based on the user’s behavior. The challenges

can be very simple (‘You will receive 12 Ksh. for every incoming call you receive this

week’) or more complex (‘Earn up to 1000 Ksh. if the Sensing app guesses you are a

high-income earner’). Users are paid a base amount of 100 Ksh. for uploading data,

plus any challenge winnings, directly via mobile money at the conclusion of each week.

Study population and recruitment

The subject population consists of Kenyans aged 18 years or older who own a smart-

phone and were able to travel to the Busara center in Nairobi. Participants were

recruited in person in public spaces in Nairobi, and were sequentially invited for an

18While these prediction targets differ from credit-worthiness, there are many settings where similar
characteristics are inferred by digital traces (for example, social assistance programs that target the
poor (Aiken et al., 2021), or digital advertisers who target college students).
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Figure 2: Smart Sensing App

(a) Installation Screen (b) Challenge with Hint (c) Earnings Calculator

enrollment session at the Busara center. During enrollment, participants completed a

survey, which captured ground truth characteristics that we later seek to infer based

on phone usage behavior.

Prospective participants were asked to keep the Sensing App on their phones

for about 16 weeks. During the informed consent process, participants were told

the dimensions of behavior that would be recorded by the app, and were given the

opportunity to ask questions. Participants had the opportunity to view the Android

permissions required for the app to function properly, and generally appeared to

understand the privacy tradeoffs involved in participation. Our sample includes only

participants who opted in. 83% of participants elected to receive challenges in English,

16% in Swahili, and 1% in both languages.

During onboarding, we discussed with participants strategies for altering different

types of phone behavior, surfaced from prior focus groups (Musya and Kamau, 2018).

We included this discussion to mimic what might be observed in the long run after

individuals discover the easiest ways to manipulate these indicators.
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Weekly rhythm

The study followed a weekly rhythm. Each Wednesday at noon, each participant

received a generic notification on their phone that said, ‘Opt in to see this week’s

challenge!’ If the participant opened the app and opted in, they were shown the details

of that week’s challenge (see Figure 2).19 Challenge incentives were valid until 1pm

Tuesday. At the conclusion of the challenge, participants had 21 hours to ensure that

their data was uploaded (until 10am Wednesday). Busara then determined how much

each participant should be paid, and payments were sent via mobile money by noon

Wednesday, at which point the next week’s cycle would begin.

Each week, participants could attrite in two ways: by not uploading their data, or

by not opting in to the challenge. These participants were sent text message reminders

or called by Busara staff, following an attrition protocol detailed in the Supplemental

Appendix (Section 1.4). We include in our analysis only participant-weeks where the

participant opted in and uploaded during the end-of-week upload window.

4.2 Baseline predictions and model estimation

Predicting user characteristics

During the first several weeks of the experiment, participants were observed but were

not incentivized to change behavior.20 Using data from these ‘control’ weeks, we find

that baseline phone behaviors have a (weak) predictive relationship with participant

characteristics. We focus on two primary characteristics (ỹi): monthly income, and

intelligence (above-median performance on Raven’s matrices).21 Results for these

outcomes, based on OLS, are shown in Table 2: R2 are approximately 0.03.22 Because

models with many coefficients can be difficult for participants to interpret, we will use

19To minimize the possibility of differential attrition, the pre-opt-in notification was the same for
all participants regardless of their assigned challenge.

20In these weeks, the subject received a challenge of the form, ‘Dear user, you do not have to do
anything for this week’s challenge. You will receive an extra Ksh 50 for accepting this challenge.’

21In addition to monthly income and intelligence, we conducted experiments to predict whether
a person is married, has advanced technology skills, has many friends, is below median age, or
communicates a lot (several different measures of total phone activity). Pooled results for all
characteristics are provided in the Supplemental Appendix (SA Table S1).

22These R2’s are fairly low, likely due to the fact that we have a small sample of relatively
homogeneous users, observed for short time spans, and that our probes are relatively limited.
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Table 2: Behavior Predicts Individual Characteristics

Monthly Income Intelligence

(Above Median Ravens)

Mean Duration of Evening Calls -0.559 (3.702) 0.0001 (0.0002)

Mean Duration of Outgoing Calls -1.770 (8.965) -0.0007 (0.0004)*

Calls with Non-Contacts -42.023 (14.033)*** •• -0.002 (0.0006)***

Outgoing Text Count •• 10.211 (12.396) 0.0004 (0.0006)

Incoming Text Count • 3.888 (7.974) •• -0.0002 (0.0004)

Evening Text Count • -9.029 (7.815) -0.0002 (0.0003)

Outgoing Call Count •• 76.752 (18.133)*** 0.002 (0.0008)*

Missed Outgoing Call Count -84.533 (31.636)*** • -0.003 (0.0014)**

Outgoing Texts on Weekdays -15.023 (15.210) -0.001 (0.0007)

Max Daily Incoming Text Count 2.901 (21.212) • 0.003 (0.0009)***

Intercept 5651.04 (430.141)*** 0.480 (0.019)***

N (individuals) 1539 1557

R2 0.026 0.027

Notes: Each column represents a regression of the outcome characteristics (column header) on behaviors
measured through the Sensing app (rows) Observations include data collected during the first week the
participant used the sensing app. Standard errors in parentheses. * = 10 percent significance, ** = 5
percent significance, *** = 1 percent significance. • : included in incentivized naive LASSO model, • :
included in incentivized strategy-robust (SR) model.

LASSO penalization to restrict to three-variable decision rules.

We use these control weeks to estimate types x for each participant using Equation

(4), with week fixed effects to absorb idiosyncratic weekly shocks.

Evidence that app-based challenges induce manipulation

During the main phase of the experiment, we randomized participants into groups

that received incentives to change specific behaviors. The ‘simple’ challenges were

of the form, ‘We’ll pay you βj for each additional xj you do’, where behavior j and

amount βj are assigned randomly. For example, one challenge was, “You will receive

3 Ksh. for each text you send this week, up to Ksh. 250.” We restricted consideration

to behaviors j that had some predictive relationship to participant types at baseline

(such as those shown in Table 2).23 Payout levels βj were drawn for each participant

23Specifically, we run LASSO regressions for each characteristic to select models with three
behavioral predictors. We included all selected behaviors and similar behaviors (correlates, different
measures of the same concept, or behaviors selected by LASSO if the original behavior was omitted).
For example, if the original regression selects outgoing calls, we also include incoming calls. Note
that by including only a subset of variables, our procedure implicitly assumes that omitted variables
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at random; most incentives were positive but some were negative (participants were

incentivized to reduce behavior).24

Participants’ behavior changed in response to these simple challenges. Table 3

presents a regression of each participant’s weekly level of different behaviors (columns)

on randomly assigned incentives to change them (rows). There are three takeaways.

First, individuals manipulated the behaviors that were incentivized, as shown by the

diagonal, which is positive and significant for most behaviors. Second, some behaviors

were more manipulable than others. For example, the number of texts sent was 49

times more responsive to incentives than the number of people called during the

workday. And finally, incentivizing one behavior can affect others, as shown in the off

diagonal elements. For example, incentivizing missed incoming calls also increased

the number of texts sent (possibly because people sent messages to ask their contacts

to call them back). In theory, our method can exploit these cross-elasticities, though

many are noisily estimated in our data.

In Section 5.3, we evaluate other methods for measuring manipulation costs. In the

Supplemental Appendix (section 2.1), we show that the quadratic cost assumption is

a reasonable (if imperfect) approximation of how people respond to variable incentive

amounts.

Estimation

We next use the data from these first parts of the experiment to estimate manipulation

costs. We allow the distribution of manipulation cost C(zi) to differ by whether a

person reports having high tech skills (zi ∈ {0, 1}), and by an unobserved random

effect vq.
25 Table 4 summarizes these estimated costs for behaviors selected by our

models (for all behaviors, see Appendix Table A1). With our sample size, we found

that off-diagonal elements were noisily estimated, so we penalized them to zero

(λcostsoffdiagonal →∞); this results in a diagonal cost matrix C.

Several intuitive patterns to the costs of manipulation can be seen in the top

are costless to manipulate.
24Each individual’s payment level for j was drawn from {−2rj ,−rj , rj , 2rj , 4rj , 8rj}, for scalar rj .

We scaled the payout for each behavior so that the maximum payout could be achieved by someone
reaching the 90th percentile of baseline behavior.

25Tech skills explained the most heterogeneity in preliminary analysis; Spence signaling will only
be captured in this dimension of heterogeneity.
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Table 3: Behavior Changes when Incentivized

Behavior incentivized Behavior observed (change per ¢ of incentive)

# Texts # Missed # Missed # People called # Calls

sent calls calls (Workdays, i.e. w non-contacts

(outgoing) (incoming) M-F, 9am-5pm) (weekends)

# Texts sent 24.51 -0.052 -0.836 -0.305 -0.022

(3.202)*** (0.588) (0.87) (0.217) (0.368)

# Missed incoming calls 4.16 0.709 0.825 0.128 -0.002

(2.196)* (0.403)* (0.597) (0.252) (0.995)

# Missed outgoing calls -0.206 0.324 1.187 0.22 0.502

(2.856) (0.524) (0.776) (0.194) (0.328)

# People called 2.308 0.156 0.68 0.497 0.108

(workday) (2.505) (0.46) (0.681) (0.17)*** (0.288)

# Calls w non-contacts -2.019 -0.056 1.234 0.015 1.233

(weekends) (2.866) (0.526) (0.779) (0.194) (0.329)***

Individual Fixed Effects X X X X X

Week Fixed Effects X X X X X

N (person-weeks) 7966 7966 7966 7966 7966

R2 0.704 0.522 0.637 0.604 0.491

Notes: Standard errors in parentheses. Bold indicates diagonal: effect on behavior j when behavior j is
incentivized. Each column represents a separate regression over the full set of behaviors assigned; only
the first five coefficients reported here. N represents person-weeks during which ‘simple’ (single behavior)
challenges were issued. * p < 0.1, ** p < 0.05, *** p < 0.01.

panel of Table 4. Outgoing communications are less costly to manipulate than

incoming communications. Text messages, which are relatively cheap to send, are

more manipulable than calls, which are relatively expensive. Simpler behaviors (such

as the number of texts sent) are more manipulable than complex behaviors (such as

the standard deviation of texts sent by day; see Appendix Table A1).

Costs are also heterogeneous across people, as shown in the bottom panel of Table

4. On average it is 9% easier for individuals who report advanced or higher tech skills

to manipulate behaviors. Including unobserved heterogeneity, the 90th percentile of

gaming ability finds it twice as easy to game as the 10th percentile.
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Table 4: Estimated Manipulation Costs

Heterogeneity by Behavior (C diagonal; subset of behaviors selected by models)

text you send

text you receive

text you send or receive in the evening (6pm−10pm)

time you call someone

second of your shortest weekend call

each different person you text or are texted by

time you receive a call

call you make that's missed

call with someone not in your contacts

text you receive on the day you receive the most texts

person who texts you

second of your average evening (6pm−10pm) call

second of your average call duration

        0.03

        0.04

        0.06

        0.48

        0.64

        1.02

        1.11

        1.91

        1.93

        3.47

        6.04

   19,761.46

3,108,632.19
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Parameters estimated using GMM. Top panel shows only behaviors used in models (• : naive LASSO,
• : strategy-robust (SR)); for all behaviors see Appendix Table A1. In cost matrix, off diagonal
elements regularized to zero (λcostsoffdiagonal →∞), diagonal elements regularized with λcostsdiagonal = 1.0,
set via cross validation. vq plot omits top 5 percent of observations.
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4.3 Results: Näıve vs. Robust Decisions

The final and most important stage of the experiment compares decisions made by

standard machine learning algorithms to the decisions made by our new strategy-robust

estimator that accounts for the costs of manipulating behavior. The robust decision

rules can be directly estimated with Equation (1), which relies on xi and Ci that

come from previous stages of the experiment.26

In this final stage, subjects received ‘complex’ challenges that rewarded them

for their ultimate classification. These challenges were designed to mimic real-world

applications of machine learning, where people can receive a desirable benefit as a

result of their classification, such as a loan (digital credit) or a grant (targeted aid). In

our experiment, the challenges were of the form, ‘We’ll pay you m if you are classified

as ŷ.’ Our analysis highlights responses to the challenge, ‘Earn up to 1000 Ksh. if the

Sensing app guesses you are a high-income earner’; pooled results from other complex

challenges are provided in the Supplemental Appendix.27

Estimating Decision Rules

In order to keep decision rules simple and interpretable for our participants, we

restricted consideration to decision rules with at most three predictors, using LASSO

penalization.28 The distribution of unobserved gaming ability V is affected by a

shrinkage parameter, which we calibrated based on performance on the first few weeks

of decision rules (see Appendix A1).

26For estimating decision rules we used xi equal to the simple average of xi during control weeks
(without week fixed effects). Due to the tight experimental timeline, the implemented decision rules
were derived from preliminary estimates of Ci. The main tables report the decision rules as assessed
by final cost estimates (as shown in the Supplemental Appendix, section 2.2, decision rules resulting
from preliminary and final cost estimates are similar). The main analysis further omits select weeks
when upload servers were offline and there was a mistake in computing the heterogeneity parameter;
the Supplemental Appendix (section 2.2) shows that our results are robust to their inclusion.

27Full results are available at https://dan.bjorkegren.com/manipulation-appendix-extra.

pdf. We map characteristics, ỹ, into payouts, y, with transformation yi =
max {0,min {1000, ỹi · 1000

ỹ
(90%)
j

}} given ỹ(90%), the 90th percentile of raw outcome ỹ.

28To do this, we regularized näıve LASSO decision rules with λdecision = max(λcv, λ3var), where
λcv is the cross-validated penalty parameter and λ3var is the smallest that resulted in a 3-variable
model. We used the same λdecision to penalize our strategy-robust decision rule, and also allowed it
to select only among three variable models.
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Treatments

Participants were randomly assigned into different target outcomes (y), decision rules

(standard βLASSO, or robust βSR), and whether the decision rule was opaque or

transparent to the user. Under the opaque treatment, users were told only the target

outcome and the reward. Under the transparent treatment, users saw the coefficients

of the decision rule, which revealed how much they are rewarded for each behavior.

In the transparent treatment, we also provided an interactive interface that showed

participants how their payments would be calculated from different behaviors (see

Figure 2c). Because the transparent treatment revealed information about potential

decision rules, after a person had seen a transparent challenge for ŷ, we did not assign

them to an opaque challenge for the same outcome.

Table 5 provides suggestive evidence of how decision rule incentives affect behavior.

The first panel simply indicates the estimated decision rule: high-income people make

more outgoing calls, send fewer texts, and receive more texts. In the second panel,

we see that if we pay people to ‘act like a high-income earner’ without revealing

the decision rule, the response is not statistically significant and often in the wrong

direction on average (i.e., participants place fewer calls and send more texts). However,

participants assigned the transparent treatment change their behavior broadly in the

direction incentivized by the algorithm, though the response is measured with noise.

Performance of decision rules

Our main empirical results, shown in Table 6, compare the performance of näıve and

strategy-robust decision rules. The first two columns (under ‘Income’) show results

for the challenge that incentivized participants to use their phones like a high-income

earner; the last two columns show the performance averaged across both the income

and intelligence challenges. The decision rules and associated manipulation costs are

shown in the top panel (“Decision Rules”); the relative performance of the different

estimators is shown below (under “Prediction Error”). We note several results.

First, in Panel A, we observe important differences in the decision rules. LASSO

places weight on the behaviors that were most correlated at baseline: outgoing calls,

outgoing texts, and incoming texts. However, some of these behaviors, particularly

text messaging, are easy to manipulate (as shown in the ‘Costs’ column). Our
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Table 5: Agents Game Algorithms

Calls Texts Texts Calls w con-contacts Avg call length
(outgoing) (outgoing) (incoming) (incoming + outgoing) (evening, seconds)

Panel A: Incentives generated by algorithm (¢/action)

βLASSO 0.625 -0.395 0.065 0 0

Panel B: Regression of xit (column label) on treatment assignment (row label)

Opaque challenge -4.7 12.5 11.1 0.8 -4.3

(8.6) (17.2) (20.7) (3.4) (7.1)

Transparent challenge 13.7 -17.5 -6.5 0.3 -2.1

(7.9)* (15.7) (19.0) (3.1) (6.5)

N (Person-weeks) 1651 1651 1651 1651 1651

Notes: Panel A reports the decision rule associated with the challenge, ‘Earn up to 1000 Ksh. if
the Sensing app guesses you are a high-income earner!’. Panel B reports how behaviors (indicated
by columns) changed when participants were randomly assigned to the opaque challenge (which
provided no information about the decision rule) or the transparent challenge (which revealed the
details of the decision rule).The sample includes all people who were assigned the income challenge
(either opaque, or the transparent LASSO model), in control weeks and the week they were assigned
that challenge. Standard errors in parentheses. * p < 0.1.

strategy-robust decision rule both selects behaviors that are harder to manipulate

(i.e., evening texts rather than incoming texts), and shrinks the importance of more

easily manipulated behaviors (especially outgoing texts).

We evaluate predictive performance using root mean squared error (RMSE), in

units of US dollars, in Panel B. This measures how far off the payments we gave to

people (based on the model and their behavior that week) were from what we desired

to give to them (based on their fixed characteristic that we targeted). The first pair of

rows report the prediction error that was expected ex ante, based on behavior observed

during the control weeks. The first row shows that when there is no manipulation,

LASSO is expected to perform marginally better than our strategy-robust estimator

(by $0.01 for income; $0.005 for income and intelligence pooled) . The second row

shows the error predicted by our model if the rule were made transparent and people

were manipulating behavior: here, the strategy-robust method is expected to perform

better (by $0.09 for income; $0.05 pooled).

The next pair of rows report the prediction error that we actually obtained when
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Table 6: Strategy-Robust vs. Standard Decision Rules

Pooled: Income

Income Costs & Intelligence

βLASSO βSR cjj βLASSO βSR

Panel A: Decision Rule ¢/action ¢/action2

# Texts (outgoing) -0.395 -0.107 0.035 . .

# Texts (incoming) 0.065 0 0.037 . .

# Texts (6pm-10pm) 0 -0.121 0.057 . .

# Calls (outgoing) 0.625 0.542 0.480 . .

Intercept (α) 301.071 304.622 . .

Panel B: Prediction Error RMSE ($) RMSE ($)

Baseline Data: Control 3.574 3.583 4.273 4.278

Baseline Data: Predicted Transparent 3.672 3.585 4.328 4.279

Implemented: Opaque 3.549 3.525 4.224 4.216

Implemented: Transparent 3.675 3.484 4.356 4.189

Average Payout ($) 3.34 3.25 4.21 4.18

N (Control Individuals) 1376 1376 1391 1391

N (Treatment Person-Weeks, Opaque) 75 75 156 156

N (Treatment Person-Weeks, Trans.) 90 74 166 154

Notes: Panel A reports the decision rule associated with the challenge, and the costs associated
with manipulating these behaviors. Panel B reports the performance of each decision rule by
outcome, root mean squared error (RMSE) at the week-model level. Pooled metrics present the
mean RMSE across models. Predicted Transparent represents the average expected performance
of models given the theoretical model, behavior incentives, and estimated costs. Implemented
Transparent/Opaque represents the average performance of models when assigned with/without
transparency hints. Average payout represents the average payout to recipients based on model
coefficients, given observed behavior. SR model estimated using preliminary costs estimates. Full
results reported in appendix.
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the decision rules were implemented experimentally. These will differ from the expected

prediction error if people respond differently than anticipated by our model. Here,

we find that the strategy-robust (SR) method performs better than LASSO when

participants are given full information about the decision rule (by $0.19 / 5% for

income; $0.17 / 4% pooled). The strategy-robust method also performs slightly better

when the decision rule is opaque (by $0.02 / 0.6% for income; $0.01 / 0.2% pooled) —

possibly because of increased shrinkage relative to standard LASSO. Table A2 shows

detailed results for both the income and intelligence outcomes, and the Supplemental

Appendix shows that the performance improvements are even larger when all outcomes

are considered: under full information, SR outperforms LASSO by 12%; under opacity,

SR outperforms LASSO by 1% (see SA Table 1).

Even if a policymaker intended to keep the decision rule opaque, using our robust

method can reduce systematic risk in the chance that agents discover the decision

rule. In practical implementations, policymakers could adaptively tweak the level of

robustness to match the level of manipulation.

5 Discussion and Extensions

5.1 Contrast to standard estimators

Standard supervised machine learning estimators evaluate each predictor based on its

correlation with the outcome within a training dataset. However, we find that features

that appear equally predictive in a training dataset have wildly different manipulation

costs, and thus will be differentially effective if used in a decision rule. We illustrate

this in Figure 3, which compares the cost of manipulation to the baseline predictive

power of several dozen features from our experiment.

We next compare our method to two common approaches to manipulation, simu-

lating performance using our experimentally estimated model of behavior.

Contrast with the ‘intuitive’ approach

An approach that is intuitive to economists would be to train a standard estimator but

simply omit behaviors that are most manipulable (e.g., by only considering features
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Figure 3: Manipulation Costs vs. Baseline Predictive Power
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Each dot is a feature. The x-axis indicates the highest R2 across income and intelligence; the y-axis
indicates the estimated manipulation cost.

above some y-axis threshold on Figure 3). We assess this approach in the Supplemental

Appendix (section 4.3). This intuitive approach reduces the predicted manipulability of

models, but as suggested by Figure 3 also removes from consideration useful predictors,

in some cases by so much that it decreases the predicted performance. When the

model is allowed to select from only the least manipulable indicators, in some cases

LASSO is left with no behaviors that are predictive enough to include in the regression.

In contrast, our approach can extract signal even from manipulable behaviors.

Contrast with the ‘industry’ approach

A second approach involves iteratively re-training a näıve machine learning estimator

after people have responded to the previous decision rule. With both income and

intelligence, we observe that the performance of this method approaches the strategy-

robust method after approximately 4 iterations of consumers being made perfectly

aware of a new rule, adapting behavior, and then the policymaker retraining the

algorithm (see Supplemental Appendix, section 4.3). However, the performance of

this iterative approach then begins to deteriorate. When predicting income this

deterioration is small, but for intelligence, performance eventually falls below the

performance obtained before any retraining. This is foreshadowed by the difference
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in moment conditions between the methods (Equation (2)); even when trained on

data from a strategy-robust equilibrium, standard methods may leave an equilibrium

because they do not anticipate that agents will respond.

5.2 Performance cost of transparency

While society increasingly demands transparency in machine decisions, transparency

can facilitate manipulation, which may reduce the quality of those decisions. Our

setting allows us to estimate this performance cost of transparency by comparing

the performance of the optimal opaque rule (under the assumption that opacity will

prevent it from being manipulated) to the optimal strategy-robust transparent rule

(factoring in equilibrium manipulation). Because the opaque rule also faces the threat

of manipulation, this difference represents an upper bound of the true performance

cost. Crucially, under the assumptions of our model, this quantity can be estimated

without revealing the decision rule: it only requires the estimation of types and costs

(the first part of our experiment).29

We estimate this cost of transparency in two ways: with our model and with our

experiment, shown in the final rows of Panel B of Table 6. Our model predicts that

transparency will reduce the performance of naive models by $4.328− $4.273 = $0.055

(1.2%) on average across income and intelligence, but that strategy-robust models

will perform similarly regardless if transparent. These predictions are similar to the

actual change in performance due to transparency that we find in our experiment:

$4.356− $4.224 = $1.32 (3%) for naive models, and indeed negligible for our strategy-

robust models.30 These two outcomes had a lower cost of transparency than other

outcomes; when we pool all outcomes together we find that transparency reduced

performance of naive models by 17% and strategy-robust models by only 6%.

29Our method of estimating costs does requires revealing the existence of features to users, but
does not require specifying whether those features are included in the model, or with what weights.

30Our results suggest that the cost of transparency is actually negative when the decision rule
targets high-income individuals, which is theoretically possible.
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Figure 4: Costs Elicited from Experts vs. Costs Measured in Experiment
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Notes: Each dot represents a behavior captured by the Sensing App. Y-axis indicates the cost of
manipulating that behavior, estimated through our experiment (Table 4). X-axis indicates costs

elicited from expert surveys, inferred as ĉjj = 1
Nsurvey

∑
i
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max(0.001,∆jji)
for each i surveyed.

5.3 Alternate methods to estimate manipulation costs

The strategy-robust estimator requires beliefs about the costs of manipulating different

behaviors. This paper demonstrates an experimental approach to eliciting those costs,

but alternative approaches may be better suited to other settings:

Expert elicitations. We evaluate how well experts can predict the costs of manipu-

lating different behaviors, in the spirit of DellaVigna and Pope (2016). We surveyed

experts with different backgrounds (PhDs from different fields, research assistants,

Busara staff who had not worked on the experiment, and Mechanical Turk workers in

the US) to predict how Kenyans would manipulate different phone behaviors when

incentivized. We then infer the structural cost parameters implied by the predictions

of the 171 respondents. Results are shown in Figure 4. Although experts generally

predict that costs are too low, the correlation is 0.30. If we use expert predictions of

manipulation costs to train our model, and then assess predicted performance with

the experimentally estimated model, even these noisy estimates improve performance

substantially for one outcome, and have an inconsequential negative effect on the

other, as shown in Table A3. This suggests that expert elicitations show promise as a

low-cost way to estimate manipulation costs. See Supplemental Appendix section 3.
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First principles/structural approach. In some cases, it may be possible to build

up the cost of underlying manipulations from market prices and first principles.31 A

structural model of costs would allow an implementer to account for changes in these

underlying parameters, suggesting how manipulation will change if, for example, the

phone company changed the price of calls, or a service emerged that made it easy to

generate incoming calls.

5.4 Nonlinear decision rules

This paper focuses on linear decision rules to sharpen intuition, but the core insight is

also relevant in nonlinear settings. If outcomes are binary or discrete, agents near the

classification threshold have higher incentives to manipulate behavior. Agents must

have beliefs about how close they are to the threshold. More generally, many modern

machine-learned decision rules are complex and nonlinear. In such settings, if agents’

beliefs about those rules can be approximated by linear functions, our approach could

be viewed as a linear approximation of those beliefs, as well as the actual functions.32

5.5 Social costs of manipulation

Our main specifications consider a narrow-minded policymaker who considers only

predictive accuracy (M(·) ≡ 0). A socially-minded policymaker may also weigh the

costs that agents incur manipulating behavior. Appendix Table A4 shows that as the

loss function places more weight on the welfare costs that agents incur manipulating,

our estimator adjusts models, typically towards even less manipulable behaviors.

31For example, the dark net price index (Gomez, 2020) reports the going price for online ma-
nipulations from an investigation on web forums: the average rate for 1,000 Instagram likes is $6;
1,000 Twitter retweets go for $25, suggesting they are more costly to manipulate. One can also cost
out manipulation strategies: one can increase the number of noncontacts spoken with by randomly
dialing 10 digit numbers and hanging up after the recipient picks up. That costs the call price of
$0.04/minute plus the value of the time to dial a 10 digit number, divided by the fraction of such
numbers that are valid and pick up, which can be valued at the going wage.

32The benefits of extreme nonlinearities in modern machine learning may be lessened when
manipulation is taken into account; linear decision rules can be more robust (Holmstrom and
Milgrom, 1987; Carroll, 2015). Nonlinear environments may also have many more equilibria. In such
settings, if iterative learning converges, it may converge to an undesirable equilibrium, whereas an
approach like ours could be used to select a global optimum.
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5.6 Nondeterministic or imperfectly known decision rules

Our model considers the case where agents know the decision rule perfectly. In practice,

agents are likely to have noisy beliefs: even if a policymaker keeps a decision rule

secret, agents may still be able to guess some of its properties. And even if a rule

is revealed, it may be difficult to interpret (Freitas, 2014). How individuals respond

will also ultimately depend on how beliefs are transmitted, including the ability for

middlemen to capitalize on exploits and defraud at scale. Such considerations suggest

extensions to our approach that incorporate a model of belief formation.

Another option for addressing manipulation is to make the decision rule less

predictable. Although making decision rules nondeterministic may make them harder

to manipulate, it undermines a major goal of transparency: that people know how

they are evaluated. It may be appropriate in some settings (as with the drunk driving

checkpoints described in Banerjee et al. (2019)).

5.7 Alternate forms of costs

For simplicity, we have modeled the cost of manipulation as having a quadratic form,

which implies that behavior shifts linearly with incentives. In general, manipulation

costs may include fixed components (e.g., the cost of setting up a spoofing app),

asymmetries (e.g., the cost of installing an app differs from that of deleting it), and

dynamic elements (such as seasonality or changes in the price of calls). There may also

be costs associated with learning the decision rule.33 In the Supplemental Appendix

(section 2.1), we analyze how behavior responds to random variation in financial

incentives. We find that linearity is a reasonable first approximation, though there is

some evidence of diminishing returns, and less response for negative incentives.

5.8 Greenfield vs. brownfield implementations

Like our study, new applications of machine learning are typically trained in greenfield

settings, using baseline data that was not incentivized, and not manipulated. Models

33As suggested by Ball (2019), there may also be particular features that have more heterogeneity
in cost between individuals. We treat these two dimensions of heterogeneity as independent; if our
approach were extended to allow for this interdependence, it would downweight indicators that have
a particular spread in manipulability.
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trained in new settings can be acutely susceptible to manipulation, as baseline data

does not expose evidence of manipulation. In greenfield settings, during training it

is possible to infer individual types directly from baseline data (Equation (4)). Our

method can also be applied in brownfield settings, where an implementation has

already been implemented and baseline behavior is already manipulated, by inverting

observed behavior under current incentives using joint moment conditions.

6 Conclusion

This paper considers the possibility that machine decisions change the world in

which they are deployed. We focus on the case where individuals manipulate their

behavior in order to game decision rules. We derive decision rules that anticipate this

manipulation, by embedding a behavioral model of how individuals will respond. This

structural approach makes it possible to decompose decision rules into constituent

components, and to gather data on how those components can be manipulated. From

these components, our structural model allows us to understand how any proposed

decision rule of a given form would be manipulated. This allows us to compute decision

rules that are optimal in equilibrium.

We demonstrate our method in a field experiment in Kenya, by deploying a tailor-

made smartphone app that mimics the ‘digital credit’ loan products that are now

commonplace in sub-Saharan Africa. We find that even some of the world’s poorest

users of technology – who are relatively recent adopters of smartphones and to whom

whom the concept of an ‘algorithm’ is quite foreign (Musya and Kamau, 2018) – are

savvy enough to change their behavior to game machine decisions. In this setting, we

show that our strategy-robust estimator outperforms standard estimators on average

by 12% when individuals are given information about the scoring rule. This framework

also allows us to quantify the “cost of transparency”, i.e., the loss in predictive

performance associated with moving from “security through obscurity” (with a näıve

decision rule) to a regime of full algorithmic transparency (with our strategy-robust

rule). We estimate this loss to be roughly 6% in equilibrium–substantially less than

the 17% loss associated with making the näıve rule transparent.

Our discussion focuses on the simple case of linear models with a small number
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of predictor variables, where subjects have either no information or full information

about the decision rule. We envision useful extensions to more complex models and

more nuanced beliefs. More generally, our approach of embedding a model of behavior

within a machine learning estimator may be relevant to a wide range of contexts where

machine learning systems face a changing human environment. In this sense, it offers

a machine learning interpretation of Lucas (1976), where algorithmic decisions change

the context of the systems they model. In our setting, β determines not just predictive

performance within a given world, but also which counterfactual world occurs.

References

Agarwal, Nikhil and Eric Budish, “Market Design,” Handbook of Industrial
Organization, 2021.

Aiken, Emily, Suzanne Bellue, Dean Karlan, Christopher Udry, and
Joshua E Blumenstock, “Machine Learning and Mobile Phone Data Can Improve
the Targeting of Humanitarian Assistance,” Working Paper, July 2021.

Akerlof, George A., “The economics of ”tagging” as applied to the optimal income
tax, welfare programs, and manpower planning,” The American economic review,
1978, 68 (1), 8–19.

Alatas, Vivi, Abhijit Banerjee, Rema Hanna, Benjamin A. Olken, Ririn
Purnamasari, and Matthew Wai-Poi, “Self-Targeting: Evidence from a Field
Experiment in Indonesia,” Journal of Political Economy, March 2016, 124 (2),
371–427.

Ball, Ian, “Scoring Strategic Agents,” arXiv:1909.01888 [econ], November 2019.
arXiv: 1909.01888.

Banerjee, Abhijit, Esther Duflo, Daniel Keniston, and Nina Singh, “The
Efficient Deployment of Police Resources: Theory and New Evidence from a Ran-
domized Drunk Driving Crackdown in India,” Working Paper 26224, National
Bureau of Economic Research September 2019. Series: Working Paper Series.

, Rema Hanna, Benjamin A Olken, and Sudarno Sumarto, “The (lack of)
Distortionary Effects of Proxy-Means Tests: Results from a Nationwide Experi-
ment in Indonesia,” Working Paper 25362, National Bureau of Economic Research
December 2018.

Barocas, Solon, Moritz Hardt, and Arvind Narayanan, Fairness and Machine
Learning, fairmlbook.org, 2018.

39



Bharadwaj, Prashant, William Jack, and Tavneet Suri, “Fintech and House-
hold Resilience to Shocks: Evidence from Digital Loans in Kenya,” Working Paper
25604, National Bureau of Economic Research February 2019.

Björkegren, Daniel, “’Big data’ for development,” 2010.

and Darrell Grissen, “Behavior Revealed in Mobile Phone Usage Predicts Credit
Repayment,” The World Bank Economic Review, 2019.

Bloomberg, “Phone Stats Unlock a Million Loans a Month for Africa Lender,”
Bloomberg.com, September 2015.

Blumenstock, Joshua E., “Estimating Economic Characteristics with Phone Data,”
AEA Papers and Proceedings, 2018, 108, 72–76.

Blumenstock, Joshua Evan, Dan Gillick, and Nathan Eagle, “Who’s Calling?
Demographics of Mobile Phone Use in Rwanda,” in “2010 AAAI Spring Symposium
Series” March 2010.

, Gabriel Cadamuro, and Robert On, “Predicting poverty and wealth from
mobile phone metadata,” Science, November 2015, 350 (6264), 1073–1076.

Borrell Associates, “Trends in Digital Marketing Services,” 2016.

Brailovskaya, Valentina, Pascaline Dupas, Jonathan Robinson, and
Jonathan Robinson, “Digital Credit: Filling a hole, or digging a hole? Evi-
dence from Malawi,” Working Paper May 2021.

Bruckner, Michael and Tobias Scheffer, “Stackelberg Games for Adversarial
Prediction Problems,” in “Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining” KDD ’11 ACM New York,
NY, USA 2011, pp. 547–555.

Camacho, Adriana and Emily Conover, “Manipulation of Social Program Eligi-
bility,” American Economic Journal: Economic Policy, May 2011, 3 (2), 41–65.

Carroll, Gabriel, “Robustness and Linear Contracts,” American Economic Review,
February 2015, 105 (2), 536–563.

CGAP, “Kenya’s Digital Credit Revolution Five Years On,” CGAP, March 2018.

Dee, Thomas S., Will Dobbie, Brian A. Jacob, and Jonah Rockoff, “The
Causes and Consequences of Test Score Manipulation: Evidence from the New York
Regents Examinations,” American Economic Journal: Applied Economics, July
2019, 11 (3), 382–423.

40



DellaVigna, Stefano and Devin Pope, “Predicting Experimental Results: Who
Knows What?,” Working Paper 22566, National Bureau of Economic Research
August 2016.

Dong, Jinshuo, Aaron Roth, Zachary Schutzman, Bo Waggoner, and Zhi-
wei Steven Wu, “Strategic Classification from Revealed Preferences,” in “Pro-
ceedings of the 2018 ACM Conference on Economics and Computation” EC ’18
ACM New York, NY, USA 2018, pp. 55–70.

Dranove, David, Daniel Kessler, Mark McClellan, and Mark Satterthwaite,
“Is More Information Better? The Effects of “Report Cards” on Health Care
Providers,” Journal of Political Economy, June 2003, 111 (3), 555–588.

Eliaz, Kfir and Ran Spiegler, “The Model Selection Curse,” American Economic
Review: Insights, September 2019, 1 (2), 127–140.

European Union, “EU General Data Protection Regulation (GDPR),” 2016.

Francis, Eilin, Joshua Blumenstock, and Jonathan Robinson, “Digital Credit:
A Snapshot of the Current Landscape and Open Research Questions,” CEGA White
Paper, 2017.

Frankel, Alex and Navin Kartik, “Muddled Information,” Journal of Political
Economy, August 2019, 127 (4), 1739–1776.

and , “Improving Information from Manipulable Data,” arXiv:1908.10330 [econ],
April 2020. arXiv: 1908.10330.

Freitas, Alex A., “Comprehensible Classification Models: A Position Paper,”
SIGKDD Explor. Newsl., March 2014, 15 (1), 1–10.

FSD Kenya, “Tech-enabled lending in Africa,” 2018.

Gomez, Miguel, “Dark Web Price Index,” 2020. Section: SECURITY.

Gonzalez-Lira, Andres and Ahmed Mobarak, “Slippery Fish: Enforcing Reg-
ulation under Subversive Adaptation,” IZA Discussion Paper 12179, Institute of
Labor Economics (IZA) February 2019.

Goodhart, Charles, Monetary Relationships: A View from Threadneedle Street,
University of Warwick, 1975. Google-Books-ID: GKwJMwEACAAJ.

Goodman, Bryce and Seth Flaxman, “European Union regulations on algorithmic
decision-making and a ”right to explanation”,” arXiv:1606.08813 [cs, stat], June
2016. arXiv: 1606.08813.

41



Greenstone, Michael, Guojun He, Ruixue Jia, and Tong Liu, “Can Technol-
ogy Solve the Principal-Agent Problem? Evidence from Pollution Monitoring in
China,” 2019.

Hanna, Rema and Benjamin A. Olken, “Universal Basic Incomes versus Targeted
Transfers: Anti-Poverty Programs in Developing Countries,” Journal of Economic
Perspectives, November 2018, 32 (4), 201–226.

Hardt, Moritz, Nimrod Megiddo, Christos Papadimitriou, and Mary
Wootters, “Strategic Classification,” in “Proceedings of the 2016 ACM Conference
on Innovations in Theoretical Computer Science” ITCS ’16 ACM New York, NY,
USA 2016, pp. 111–122.

Holmstrom, Bengt and Paul Milgrom, “Aggregation and Linearity in the Provi-
sion of Intertemporal Incentives,” Econometrica, 1987, 55 (2), 303–328.

Hu, Lily, Nicole Immorlica, and Jennifer Wortman Vaughan, “The Disparate
Effects of Strategic Manipulation,” Proceedings of the Conference on Fairness,
Accountability, and Transparency - FAT* ’19, 2019, pp. 259–268. arXiv: 1808.08646.

Kleinberg, Jon and Manish Raghavan, “How Do Classifiers Induce Agents to
Invest Effort Strategically?,” in “Proceedings of the 2019 ACM Conference on
Economics and Computation” EC ’19 ACM New York, NY, USA 2019, pp. 825–844.
event-place: Phoenix, AZ, USA.

Lucas, Robert E., “Econometric policy evaluation: A critique,” Carnegie-Rochester
Conference Series on Public Policy, January 1976, 1 (Supplement C), 19–46.

McCaffrey, Mike, Olivia Obiero, and George Mugweru, “M-Shwari: Market
Reactions and Potential Improvements,” Technical Report 139 2013.

Milli, Smitha, John Miller, Anca D. Dragan, and Moritz Hardt, “The Social
Cost of Strategic Classification,” in “Proceedings of the Conference on Fairness,
Accountability, and Transparency” FAT* ’19 ACM New York, NY, USA 2019,
pp. 230–239. event-place: Atlanta, GA, USA.

Mirrlees, J. A., “An Exploration in the Theory of Optimum Income Taxation,” The
Review of Economic Studies, 1971, 38 (2), 175–208.

Musya, Mercy and Grace Kamau, “How do you say “algorithm” in Kiswahili?,”
December 2018. Library Catalog: medium.com.

National Institute of Standards and Technology, “Guide to General Server
Security,” NIST Special Publication, July 2008, (800-123).

Nichols, Albert L. and Richard J. Zeckhauser, “Targeting Transfers through
Restrictions on Recipients,” The American Economic Review, 1982, 72 (2), 372–377.

42



Niehaus, Paul, Antonia Atanassova, Marianne Bertrand, and Sendhil Mul-
lainathan, “Targeting with Agents,” American Economic Journal: Economic
Policy, 2013, 5 (1), 206–238.

Perdomo, Juan C., Tijana Zrnic, Celestine Mendler-Dünner, and Moritz
Hardt, “Performative Prediction,” arXiv:2002.06673 [cs, stat], June 2020. arXiv:
2002.06673.

Ramsey, F. P., “A Contribution to the Theory of Taxation,” The Economic Journal,
1927, 37 (145), 47–61.

Sayed-Mouchaweh, Moamar and Edwin Lughofer, Learning in Non-Stationary
Environments: Methods and Applications, Springer Science & Business Media, April
2012. Google-Books-ID: qFWM2nva7xQC.

Spence, Michael, “Job Market Signaling,” The Quarterly Journal of Economics,
1973, 87 (3), 355–374.

Sundsøy, P̊al, Johannes Bjelland, Bjørn-Atle Reme, Eaman Jahani, Erik
Wetter, and Linus Bengtsson, “Estimating individual employment status us-
ing mobile phone network data,” arXiv:1612.03870 [cs], December 2016. arXiv:
1612.03870.

Appendices

A1 Estimation Details

Moment Conditions

The following moment conditions jointly identify C and ω.

Incentives are orthogonal to idiosyncratic behavior shocks (E[βitkεitj] = 0). For

each pair of behaviors jk (including j = k) this yields sample moment condition:

1

N

N∑
i=1

∑
t∈Ti

βitk

[
xijt − xij − µjt − e−ω

′zi · [C−1βit]j
]

= 0

where [a]k indicates the kth element of a.
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Implied unobserved heterogeneity ṽi is given by:

ṽi =
1∑

t∈Ttreatmenti
|Keval

it |
∑

t∈Ttreatmenti

∑
k∈Keval

it

[
xikt − xik − µkt

[C−1βit]k
− e−ω′zi

]
(5)

where Keval
it is the set of behaviors to be evaluated for i in period t.34 Unobserved

heterogeneity is mean zero, yielding moment condition, 1
N

∑
i ṽi = 0, and orthogonal

to each heterogeneity characteristic zl, yielding moment condition(s) 1
N

∑
i zli · ṽi = 0.

Manipulation Cost Regularization

We add to our GMM loss function the regularization term:

Rλ
costs

costs (·) =

[
λcostsdiagonal

∑
k

θ2kk + λcostsoffdiagonal

∑
j 6=k

θ2jk

][
1

N

∑
i

e−2ω
′zi

]

where θjk represents the elements of inverse costs C−1.

Unobserved Gaming Ability

We recover the distribution of unobserved gaming ability V in two steps. We compute

gaming ability residuals ṽi as in Equation (5), which capture whether each individual

manipulates more or less than predicted during incentivized periods. Then, to reduce

the impact of noise and outliers, we shrink and winsorize these inferred shocks.

We form the empirical distribution V = {max(φ · ṽi, v)}i, where v is the lowest

value of ṽ that leads to a nonnegative implied gaming ability, and φ is a shrinkage

parameter calibrated to minimize overall error in observed incentivized periods (that

is, v = mini(ṽi|φ · ṽi ≥ −minj(e
−ω′zj))).

We calibrated φ to 1e-6; For details, see Supplemental Appendix 2.2.2.

34We set Keval
it = {k s.t. βitk 6= 0}, so that ṽi is evaluated only off shifts in the incentivized

behavior. One could alternately evaluate how each incentive shifts all behaviors.

44



Table A1: Estimated Manipulation Costs for All Behaviors

Heterogeneity by Behavior (C diagonal; all incentivized behaviors)

text you send
text you receive
text you send on a weekday
each text message you send in the evening hours (after 6pm)
text you send or receive in the evening (6pm−10pm)
time you call someone
call with a number not in your contacts during the workday (9am−5pm
second of your shortest weekend call
call with a number not in your contacts on the weekend
each different person you text or are texted by
person you text during the early morning hours (12am − 5am)
time you receive a call
each person you text in the evening (after 6pm)
person you text on the weekday that you send the most texts
call between 12am and 5am
each different person you text or are texted by on the weekend
text you send on the day that you send the most texts
person you call during the workday
call you make that's missed
call with someone not in your contacts
person you receive a text from during the evening (5pm − 10pm)
text you send on the day you send the least texts
text you receive on the day you receive the most texts
if you keep it at 100%.
person you text
outgoing call on the day with the least outgoing calls
person who texts you
person who calls you during the workday
each person you call for over 30 minutes
person you text on the workday that you text the most people
time you plug in your phone and it charges
if the number of texts you send varies a lot weekday to weekday
person you receive a text from during the early morning hours (12am − 5am)
day you use a whatsapp−related app
if the number of texts you send and receive varies a lot day to day
missed call on the day you have the least missed calls
tools−type app you use
if the number of texts you receive varies a lot weekday to weekday
5−minute−or−more call with a non−contact
day you use the gmail app
day you use the app
if you use a whatsapp−related app.
if you use a tools−type app.
if you use any document− or report−related app.
productivity−type app you use
if you use the gmail app.
if you use a productivity−type app.
second of your average evening (6pm−10pm) call
if you use any twitter−brand app.
text you receive on the day you receive the least texts
missed call
text you receive on the evening (6pm−10pm) that you receive the least texts
if you use the app
second of your average workday call (monday−friday
if you use the twitter app at least once
call that lasts at least an hour
second of your average call duration
day you use any instagram−brand app
day that you use a productivity−type app
instagram−brand app used
social−type app you use
document or report−related app you use
times the average day−to−day variation in your texts
percentage point of your time that you spend within .5 kilometers of the busara office
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Parameters estimated using GMM. Red dot indicates used in a LASSO model; blue indicates used in
SR model. In cost matrix, off diagonal elements cjk; j6= k regularized to zero (λcostsoffdiagonal → ∞),

diagonal elements regularized with λcostsdiagonal = 1.0, set via 3-fold cross validation.
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Table A2: Performance of Decision Rules

Costs Income & Intelligence Income Intelligence

(Pooled) (Ravens above median)

cjj βLASSO βSR βLASSO βSR βLASSO βSR

¢/action2 ¢/action ¢/action

Panel A: Decision Rule

text count out 0.035 - - -0.395 -0.107

text count incoming 0.037 - - 0.065 0.278 0.145

text count evening 0.057 - - -0.121

call count out 0.480 - - 0.625 0.542

call count outgoing missed 1.91 - - -0.208

calls noncontacts 1.929 - - -0.606 -0.575

max daily texts incoming 3.471 - - 0.324

intercept . - - 301.071 304.622 490.727 488.441

Panel B: Prediction Error RMSE ($) RMSE ($) RMSE ($)

Baseline Data: Control 4.273 4.278 3.574 3.583 4.971 4.973

Baseline Data: Predicted Transparent 4.328 4.279 3.672 3.585 4.984 4.974

Implemented: Opaque 4.224 4.216 3.549 3.525 4.898 4.906

Implemented: Transparent 4.356 4.189 3.675 3.484 5.037 4.894

Average Payout ($) 4.21 4.18 3.34 3.25 5.11 5.07

N (Control Individuals) 1391 1391 1376 1376 1391 1391

N (Treatment person-weeks, Opaque) 156 156 75 75 81 81

N (Treatment person-weeks, Transparent) 166 154 90 74 76 80

Notes: Panel A reports the decision rule associated with the challenge, and the costs associated with manipulating these behaviors. Panel B
reports the performance of each decision rule by outcome, root mean squared error (RMSE) at the week-model level. Pooled metrics present the
mean RMSE across models. Predicted Transparent represents the average expected performance of models given the theoretical model, behavior
incentives, and estimated costs. Implemented Transparent/Opaque represents the average performance of models when assigned with/without
transparency hints. SR model estimated using preliminary cost estimates.
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Table A3: SR Models Based on Expert-Estimated Costs

Costs Costs Income Intelligence (above median Ravens)

(Actual) (From Experts) βLASSOfinal β
SRfinal

ExpertCost βSRfinal βLASSOfinal β
SRfinal

ExpertCosts βSRfinal

Panel A: Decision Rule

text count out 0.035 3.804 -0.499 -0.329 -0.093

text count incoming 0.037 5.645 0.141 0.014 0.270 0.223 0.114

text count evening 0.057 3.805 -0.115

call count out 0.480 5.4 0.657 0.591 0.501 -0.058

call count outgoing missed 1.914 5.4 -0.156

calls noncontacts 1.929 5.891 -0.547 -0.518

max daily texts incoming 3.471 5.155 0.421

Intercept 296.342 305.309 303.456 489.686 483.529 487.049

λdecision 759.295 759.295 759.296 1032.37 1032.37 1032.37

Panel B: Prediction Error RMSE ($) RMSE ($)

Predicted Opaque 3.572 3.577 3.586 4.972 4.982 4.973

Predicted Transparent 3.831 3.64 3.586 4.983 4.989 4.973

Notes: Panel A reports the decision rules derived from naive LASSO and our strategy-robust model, as well as strategy-robust models that
use only control weeks and costs estimated from expert surveys. It also reports the costs associated with these behaviors. Panel B reports the
predicted performance of these decision rules, using the experimentally estimated model. βLASSOfinal presented in this table differs slightly from
the βLASSO which was implemented. The regularization protocol was updated to select penalization closer to the boundary of 3 coefficients
and the sample was changed to coincide with that used for the SR model (it includes only individuals with nonmissing tech skills, dropping
approximately 1.5 percent of the sample). For expert survey costs, we infer heterogeneity in gaming ability using variation in participant responses
(see Supplemental Appendix).

47



Table A4: Models Adjusted for Welfare Costs of Manipulation

Costs Income Intelligence (above median Ravens)

cjj βLASSOfinal β
SRfinal

w=0 β
SRfinal

w=0.1 β
SRfinal

w=0.5 β
SRfinal

w=1 βLASSOfinal β
SRfinal

w=0 β
SRfinal

w=0.1 β
SRfinal

w=0.5 β
SRfinal

w=1

Panel A: Decision Rule

text count out 0.035 -0.499 -0.093 -0.092

text count incoming 0.037 0.141 0.270 0.114 0.067 0.030 0.019

text count out evening 0.054

text count evening 0.057 -0.115 -0.115 -0.055 -0.037 0.023

call count out 0.480 0.657 0.501 0.494 0.278 0.179

max daily texts out 1.683 -0.294 -0.222

call count outgoing missed 1.914 -0.156

calls noncontacts 1.929 -0.547 -0.518 -0.422 -0.204

max daily texts in 3.471 0.421 0.541 0.518 0.387

call count over 1 minute 395022

Intercept 296.342 303.456 303.669 312.514 314.717 489.686 487.049 489.071 488.921 489.317

λdecision 759.296 759.296 759.296 759.296 759.296 1032.37 1032.37 1032.37 1032.37 1032.37

Panel B: Prediction Error RMSE ($) RMSE ($)

Predicted Opaque 3.572 3.586 3.586 3.599 3.607 4.972 4.973 4.974 4.979 4.984

Predicted Transparent 3.831 3.586 3.586 3.598 3.607 4.983 4.973 4.974 4.979 4.984

Notes: Panel A reports the decision rules derived from naive LASSO and our strategy-robust model, with varying social welfare weight w placed on the costs
agents incur manipulating. Panel B reports performance, measured as root mean squared error (RMSE). βLASSOfinal presented in this table differs slightly from
the βLASSO which was implemented. The regularization protocol was updated to select penalization closer to the boundary of 3 coefficients and the sample was
changed to coincide with that used for the SR model (it includes only individuals with nonmissing tech skills, dropping approximately 1.5 percent of the sample).

Manipulation costs included in policymaker’s objective as M(·) = w · Ei [ci(x
∗
i (β), xi)] = w · Ei,q

[
1
2β
′C−1′

iq β
]
, for a weight w on consumer welfare.
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